The Global AI for Tidal Energy Market was valued at USD 8.9 billion in 2023 and is projected to reach a market size of USD 18.48 billion by 2030. Over the forecast period of 2024-2030, the market is projected to grow at a CAGR of 11%.
Artificial Intelligence (AI) is used in tidal energy systems to optimize the design, operation, and maintenance of tidal turbines, which are machines that convert the kinetic energy of tidal currents into electricity. Artificial intelligence (AI) may be used to integrate modern wind energy technology with tidal turbines, producing an adaptive control system that improves turbine performance while lowering the lifetime cost of power by 17% and launching the tidal energy sector into the commercial realm. By applying AI to maximize turbine performance and reliability using data from wind energy that is acquired at the surface and transmitted to the turbine system, the lifetime costs for this tidal energy might be lowered by almost 20%. AI may also be used to track the health and performance of tidal turbines, spot anomalies, and flaws, predict breakdowns, and improve maintenance plans to reduce downtime and operating costs.
Key Market Insights:
It is anticipated that tidal farm real-time AI optimization would result in significant efficiency gains. AI may optimize energy extraction by up to 15%, according to studies. Predictive maintenance enabled by AI offers a significant chance to save costs. According to research, the renewable energy industry may be able to cut maintenance costs by as much as 30% by implementing AI-based predictive maintenance. Increased use of AI in tidal energy generation may have a beneficial effect on the environment. Artificial intelligence (AI) has the potential to reduce dependency on fossil fuels by increasing reliance on clean and renewable energy sources and optimizing energy capture and downtime. One of the biggest problems facing tidal farms is equipment failure-related downtime. Predictive maintenance enabled by AI may drastically save downtime. According to industry estimates, AI may reduce unexpected downtime by as much as 20%.
Global AI for Tidal Energy Market Drivers:
AI for tidal energy systems is motivated by the need to reduce greenhouse gas emissions and the growing electricity demand:
Fossil fuels are the most widely used source of electricity, yet they have several disadvantages. They will eventually expire since they are not renewed. They also contribute to climate change and global warming when burned, releasing more greenhouse gases like carbon dioxide (CO2). Using the tides to generate electricity, tidal energy is a sustainable energy source. Tidal energy originates from the moon and the sun's gravitational pull on Earth, which generates tides. A tide is the regular rise and fall in ocean water levels along coasts. To harness the power of tides, one can employ a variety of techniques, including tidal barrages, tidal lagoons, and tidal turbines. There are several ways in which tidal energy is better than other renewable energy sources. Because it is predictable, one may accurately predict it by utilizing the lunar and solar cycles as a foundation. It is also dependable since it is constantly available, weather permitting. Because of its great potential, it can produce a lot of power in a small amount of area. It also creates no carbon emissions or pollutants, and it has little to no detrimental effects on marine life, which contributes to its minimal environmental impact.
The availability and accessibility of data and algorithms enable the development and use of AI models of tidal energy systems:
Data is the set of facts and information that may be used for analysis and decision-making. Algorithms are sets of rules and instructions that may be used to process data and perform tasks. Data and algorithms are essential for the development and use of AI models and techniques for tidal energy systems. Tidal energy systems may benefit from information from a wide range of data sources, such as sensors, weather stations, satellites, tide charts, and historical records in addition to echo sounders. Making decisions can be aided by information on the physical, biological, and environmental aspects of tidal energy systems, including fish abundance, noise levels, wave heights, turbine performance, and water levels and currents. Tidal energy systems can benefit from methods from a wide range of fields, including signal processing, computer vision, fluid dynamics, machine learning, optimization, control theory, and signal processing. Algorithms may assist with a variety of tidal energy system issues and objectives, including turbine design, operation optimization, fault detection, condition monitoring, failure prediction, and maintenance planning.
Global AI for Tidal Energy Market Restraints and Challenges:
The hydrodynamics of tidal currents may be altered by sea waves through effects on the water level, velocity, direction, turbulence, and bottom friction. These modifications may influence the output and quality of the power as well as the functionality and effectiveness of the sensors and tidal turbines. Sea waves have the potential to affect the data collected by tidal energy systems, which might hinder the development and verification of AI models. For example, the signal-to-noise ratio and resolution of optical and acoustic sensors can be reduced by wave-induced motion and noise. Sea waves may interfere with tidal energy system management and communication, which may affect AI model feedback and adaptation. Wave-induced attenuation and interference, for example, can result in reduced bandwidth and reliability for wireless and underwater communication networks. To account for the fluctuation and uncertainty of sea waves and their impact on tidal energy systems, more robust and dependable artificial intelligence models and approaches may be required.
Global AI for Tidal Energy Market Opportunities:
There are fantastic chances to transform this clean energy source with the help of the global AI for the Tidal Energy market. AI has enormous promise because of its real-time processing power over large volumes of data. Optimization is one important aspect. AI can analyze intricate data on turbine performance and tidal currents, enabling real-time modifications to maximize energy output and efficiency throughout whole tidal farms. Predictive maintenance facilitated by AI presents yet another opportunity for expansion. Artificial Intelligence (AI) may predict equipment breakdowns ahead of time and save costly downtime and repairs by evaluating sensor data and previous trends. These developments will increase tidal energy farms' overall productivity and cost-competitiveness, opening the door for a larger uptake of this renewable energy source.
AI FOR TIDAL ENERGY MARKET REPORT COVERAGE:
REPORT METRIC |
DETAILS |
Market Size Available |
2023 - 2030 |
Base Year |
2023 |
Forecast Period |
2024 - 2030 |
CAGR |
11% |
Segments Covered |
By Type, Technology, Application, and Region |
Various Analyses Covered |
Global, Regional & Country Level Analysis, Segment-Level Analysis, DROC, PESTLE Analysis, Porter’s Five Forces Analysis, Competitive Landscape, Analyst Overview on Investment Opportunities |
Regional Scope |
North America, Europe, APAC, Latin America, Middle East & Africa |
Key Companies Profiled |
Nova Innovation Ltd, Wood, Atlantis Resources Ltd, Ocean Power Technologies Inc, ABB Ltd, AWS Ocean Energy Ltd, Tidal Lagoon Plc, Corpower Ocean AB, Eco Wave Power, Verdant Power, Inc |
Tidal Energy
Wave Energy
One kind of hydropower that uses the energy of the tides to produce electricity is called tidal energy. Artificial Intelligence has the potential to forecast tidal patterns, enhance the efficiency of tidal energy systems, and optimize tidal energy production, storage, and delivery. It is projected that the tidal energy industry will grow the fastest and take the lead. This is because tidal energy is more reliable and constant than wave energy since it occurs twice a day. This facilitates the process of optimizing tidal energy generation using AI algorithms. Technologies utilizing tidal energy cause less environmental disturbance and have less effect on the marine ecosystem. Because tides are dependable, tidal energy systems provide more stable electricity than wave energy systems.
Tidal stream generators
Oscillating Water Columns
Tidal turbines
Tidal barrages
Tidal fences
A structure that spans a tidal channel or strait to partially obstruct water flow is known as a tidal fence. Several turbines or rotors are used to catch and convert the kinetic energy of tidal currents into electrical energy. The tidal stream generator segment now leads the market and is expected to do so for the duration of the forecast period because of its lower environmental impact, installation cost, and maintenance cost when compared to other technologies. Tidal barrages are the industry with the fastest-growing installed capacity because of their lengthy history and substantial environmental impact.
Power Generation
Desalination
AI can improve desalination plants by selecting the best kind and location based on a few variables. keeping the ideal characteristics in mind when designing and performing. Estimating the factors that affect performance and productivity. Modifying the operation to consider evolving circumstances and demands. Keeping an eye on things, diagnosing problems, and identifying mistakes or irregularities. Lowering energy usage, emissions, and waste to lessen the adverse consequences on the environment. Based on these facts, it is fair to conclude that tidal energy with power generation now dominates the market whereas tidal energy with desalination is growing quickly. While AI can enhance both tidal energy applications, further research and development are needed to assess its commercial viability and resolve its limitations.
North America
Asia-Pacific
Europe
South America
Middle East and Africa
North America is expected to be a huge market for AI in tidal energy because of the presence of significant technology companies, research institutes, and government support for the development of renewable energy sources. The Atlantic and Pacific coastlines of the United States and Canada are rich in tidal energy resources. Europe is seeing rapid growth in the market for artificial intelligence in tidal energy, particularly in countries like Norway, the UK, France, and Ireland that have large tidal ranges. The European Commission has identified tidal energy as one of the main areas for research and development funding to promote the growth of renewable energy.
COVID-19 Impact Analysis on the Global AI for Tidal Energy Market:
COVID-19 has upended the global energy industry by reducing the demand and costs for fossil fuels, especially gas and oil, which are the main competitors of renewable energy sources like tidal energy. This may provide tidal energy a chance to gain market share and attract more investment since it provides a clean, consistent, and predictable source of electricity that may help reduce greenhouse gas emissions and mitigate climate change. COVID-19 has affected the industry's global supply chains and logistics in addition to the manufacture, installation, and maintenance of renewable energy systems and equipment, such as sensors and tidal turbines. The escalating expenses and hazards linked to the installation and operation of tidal energy facilities may hinder the sector's expansion. COVID-19 has also spurred innovation and digitalization in the energy sector as more companies and organizations use digital technologies, including artificial intelligence, to increase their resilience, efficiency, and flexibility in response to shifting market conditions and customer requirements. The demand for and usage of tidal energy systems may rise because of AI's ability to help optimize the design, operation, and maintenance of tidal turbines and sensors as well as identify and prevent breakdowns and issues.
Recent Trends and Developments in the Global AI for Tidal Energy Market:
In the Étel estuary in Brittany, France, a tidal turbine powered by artificial intelligence has been installed and tested successfully as part of the ELEMENT project, an EU effort managed by Nova Innovation in collaboration with 11 other organizations, including Wood. The goal of the project is to demonstrate the benefits of using AI to improve tidal turbine performance and speed up the commercialization and scalability of tidal energy.
SIMEC Atlantis Energy, located in the United Kingdom, is the company behind the current generation of tidal turbines, dubbed AR2000. It is projected that these turbines will be the largest and strongest single-axis turbines available. The company plans to deploy the first AR2000 turbine at its MeyGen tidal array in Scotland, where it is already using AI and machine learning to enhance the operation and maintenance of its current turbines.
Key Players:
Nova Innovation Ltd
Wood
Atlantis Resources Ltd
Ocean Power Technologies Inc
ABB Ltd
AWS Ocean Energy Ltd
Tidal Lagoon Plc
Corpower Ocean AB
Eco Wave Power
Verdant Power, Inc
Chapter 1. AI for Tidal Energy Market – Scope & Methodology
1.1 Market Segmentation
1.2 Scope, Assumptions & Limitations
1.3 Research Methodology
1.4 Primary Sources
1.5 Secondary Sources
Chapter 2. AI for Tidal Energy Market – Executive Summary
2.1 Market Size & Forecast – (2024 – 2030) ($M/$Bn)
2.2 Key Trends & Insights
2.2.1 Demand Side
2.2.2 Supply Side
2.3 Attractive Investment Propositions
2.4 COVID-19 Impact Analysis
Chapter 3. AI for Tidal Energy Market – Competition Scenario
3.1 Market Share Analysis & Company Benchmarking
3.2 Competitive Strategy & Development Scenario
3.3 Competitive Pricing Analysis
3.4 Supplier-Distributor Analysis
Chapter 4. AI for Tidal Energy Market Entry Scenario
4.1 Regulatory Scenario
4.2 Case Studies – Key Start-ups
4.3 Customer Analysis
4.4 PESTLE Analysis
4.5 Porters Five Force Model
4.5.1 Bargaining Power of Suppliers
4.5.2 Bargaining Powers of Customers
4.5.3 Threat of New Entrants
4.5.4 Rivalry among Existing Players
4.5.5 Threat of Substitutes
Chapter 5. AI for Tidal Energy Market – Landscape
5.1 Value Chain Analysis – Key Stakeholders Impact Analysis
5.2 Market Drivers
5.3 Market Restraints/Challenges
5.4 Market Opportunities
Chapter 6. AI for Tidal Energy Market – By Type
6.1 Introduction/Key Findings
6.2 Tidal Energy
6.3 Wave Energy
6.4 Y-O-Y Growth trend Analysis By Type
6.5 Absolute $ Opportunity Analysis By Type, 2024-2030
Chapter 7. AI for Tidal Energy Market – By Application
7.1 Introduction/Key Findings
7.2 Power Generation
7.3 Desalination
7.4 Y-O-Y Growth trend Analysis By Application
7.5 Absolute $ Opportunity Analysis By Application, 2024-2030
Chapter 8. AI for Tidal Energy Market – By Technology
8.1 Introduction/Key Findings
8.2 Tidal stream generators
8.3 Oscillating Water Columns
8.4 Tidal turbines
8.5 Tidal barrages
8.6 Tidal fences
8.7 Y-O-Y Growth trend Analysis By Technology
8.8 Absolute $ Opportunity Analysis By Technology, 2024-2030
Chapter 9. AI for Tidal Energy Market , By Geography – Market Size, Forecast, Trends & Insights
9.1 North America
9.1.1 By Country
9.1.1.1 U.S.A.
9.1.1.2 Canada
9.1.1.3 Mexico
9.1.2 By Type
9.1.3 By Application
9.1.4 By Technology
9.1.5 Countries & Segments - Market Attractiveness Analysis
9.2 Europe
9.2.1 By Country
9.2.1.1 U.K
9.2.1.2 Germany
9.2.1.3 France
9.2.1.4 Italy
9.2.1.5 Spain
9.2.1.6 Rest of Europe
9.2.2 By Type
9.2.3 By Application
9.2.4 By Technology
9.2.5 Countries & Segments - Market Attractiveness Analysis
9.3 Asia Pacific
9.3.1 By Country
9.3.1.1 China
9.3.1.2 Japan
9.3.1.3 South Korea
9.3.1.4 India
9.3.1.5 Australia & New Zealand
9.3.1.6 Rest of Asia-Pacific
9.3.2 By Type
9.3.3 By Application
9.3.4 By Technology
9.3.5 Countries & Segments - Market Attractiveness Analysis
9.4 South America
9.4.1 By Country
9.4.1.1 Brazil
9.4.1.2 Argentina
9.4.1.3 Colombia
9.4.1.4 Chile
9.4.1.5 Rest of South America
9.4.2 By Type
9.4.3 By Application
9.4.4 By Technology
9.4.5 Countries & Segments - Market Attractiveness Analysis
9.5 Middle East & Africa
9.5.1 By Country
9.5.1.1 United Arab Emirates (UAE)
9.5.1.2 Saudi Arabia
9.5.1.3 Qatar
9.5.1.4 Israel
9.5.1.5 South Africa
9.5.1.6 Nigeria
9.5.1.7 Kenya
9.5.1.8 Egypt
9.5.1.9 Rest of MEA
9.5.2 By Type
9.5.3 By Application
9.5.4 By Technology
9.5.5 Countries & Segments - Market Attractiveness Analysis
Chapter 10. AI for Tidal Energy Market – Company Profiles – (Overview, Product Portfolio, Financials, Strategies & Developments)
10.1 Nova Innovation Ltd
10.2 Wood
10.3 Atlantis Resources Ltd
10.4 Ocean Power Technologies Inc
10.5 ABB Ltd
10.6 AWS Ocean Energy Ltd
10.7 Tidal Lagoon Plc
10.8 Corpower Ocean AB
10.9 Eco Wave Power
10.10 Verdant Power, Inc
2500
4250
5250
6900
Frequently Asked Questions
The Global AI for Tidal Energy Market size is valued at USD 8.9 billion in 2023.
The worldwide Global AI for Tidal Energy Market growth is estimated to be 11% from 2024 to 2030.
AI is going to change the market for tidal energy. Tidal energy will become more economical and efficient because of real-time AI's analysis of data to optimise energy output and AI-driven predictive maintenance's reduction of downtime.
The global AI for tidal energy market's growth was probably hindered by the COVID-19 epidemic. This is because the manufacturing and installation of tidal energy devices were hampered by supply chain interruptions. Project deadlines were also postponed. Long-term effects, meanwhile, may be favourable as businesses increasingly turn to AI to cut costs and improve operational effectiveness.
Analyst Support
Every order comes with Analyst Support.
Customization
We offer customization to cater your needs to fullest.
Verified Analysis
We value integrity, quality and authenticity the most.