automotive-thumbnail.png

Smart Mobility AI Market Research Report – Segmented By Element (Ride-Sharing, Car-Sharing, Bike Commuting); By Solutions (Traffic Management, Parking Management, Mobility Management, Others); By Technology (Autonomous Vehicles, Connected Vehicles, Fleet Management, Others); By End-User (Automotive OEMs, Tier 1 Suppliers, Technology Companies, Transportation Companies, Governments); and Region - Size, Share, Growth Analysis | Forecast (2024 – 2030)

Smart Mobility AI Market Size (2024 – 2030)

The Global Smart Mobility AI Market was valued at USD 52.68 Billion and is projected to reach a market size of USD 186.56 Billion by the end of 2030. Over the forecast period of 2024-2030, the market is projected to grow at a CAGR of 19.8%.

SMART MOBILITY

Smart mobility means using different modes of transportation to reduce the number of cars on the road. Car-sharing, ride-sharing, and biking commute are some of the concepts that smart mobility has. The demand for smart mobility has grown. The growth is attributed to a number of factors, including an increase in pollution, an increase in deaths, and the loss of time caused by traffic jams.

Artificial intelligence is being used in various transportation related systems. This includes the development of cars that use artificial intelligence to make decisions. It is possible to prevent breakdowns of vehicles and reduce costs with the use of predictive maintenance. Smart mobility artificial intelligence allows for efficient route planning and congestion reduction. Demand forecasting and smart parking systems use artificial intelligence to assist drivers in locating available parking spots. Smart mobility solutions have the potential to enhance road safety, reduce carbon emissions, and improve transportation accessibility for all individuals in a region.

Key Market Insights:

Due to the growing need for efficient, sustainable, and safe transportation systems, the demand for Smart Mobility Artificial Intelligence solutions is surging. Artificial intelligence is being used to improve traffic flow, reduce congestion, enhance safety, and improve the transportation experience for citizens. Smart Mobility artificial intelligence solutions are being developed because of advances in machine learning and artificial intelligence. These innovations lead to smarter and more responsive transportation systems.

There is an integration of the internet of things for connected mobility. The integration of internet of things devices with smart mobility platforms is creating a hyper connected transportation system. Vehicles, infrastructure elements, and traffic signals are equipped with sensors and communicate data to artificial intelligence systems to provide a comprehensive understanding of the transportation landscape.

Smart Mobility AI Market Drivers:

The smart mobility market is growing due to the new and improved transportation systems.

Bike sharing and car sharing are new modes of transportation. The modes of transportation allow people and vehicles to share data.  It not only provides the route, direction, and amount of time necessary to reach the destination, but also alert drivers to any additional traffic, encourages safe driving, and reduces the chances of accidents, augmenting the market demand for smart mobility artificial intelligences. Additionally, investments made by governments in various regions, especially in developing and developed countries, on new developmental projects and technologies for smart mobility solutions, and

Smart Mobility AI Market Restraints and Challenges:

The deployment and maintenance of smart mobility artificial intelligence solutions and the shortage of skilled professionals are some of the challenges that the global smart mobility market is facing. There are costs associated with the deployment and maintenance of smart mobility solutions that can be a barrier to market entry for some companies. Smaller firms may find it difficult to bear the high costs of integrating artificial intelligence into the mobility and transportation industry. The growth and implementation of artificial intelligence models in smart mobility solutions is restricted by a scarcity of skilled professionals. Advanced technical skills are required in the process of developing and implementing smart mobility solutions. The growth of the global smart mobility market is hampered by the lack of skilled professionals. The growth and adoption of the Smart Mobility Market face significant challenges. Lack of infrastructure readiness, high costs and affordability barriers are some of the hurdles.

 Evolving regulatory frameworks, consumer acceptance and trust issues, data privacy and security concerns, and limited access in rural areas are some of the challenges. It's important to balance the energy and environmental impact of smart mobility technologies. Enhancing infrastructure, addressing affordability, establish regulations, build trust, ensure data security, and bridge the digital divide are some of the challenges that need to be overcome. The full potential of smart mobility can be unlocked by successfully navigating these challenges.

Smart Mobility AI Market Opportunities:

Reducing traffic and increasing road safety can be achieved by buses, trucks, and cars being connected to vital information. The economic, social, and sustainable objectives of the city will be helped by CAVs. In order to control traffic, cities are moving beyond isolated systems. They are connecting these data sources to one another via connected networks and cloud technologies. The next step is to combine these connected data sources with advanced data analysis and artificial intelligence capabilities to create a system that can drive smart decisions on a scale that depends upon the need & necessity of the city/town There is an opportunity for manufacturers and producers to create smart mobility solutions to elevate the growth of the global smart mobility market.

There are opportunities for technology companies and transportation service providers. Mobility-as-a-service platforms offer integrated mobility solutions, creating opportunities for flexible transportation experiences. Connected infrastructure and intelligent transportation systems can be used to improve transportation efficiency. Businesses can use data analytics and artificial intelligence to improve their operations. There are opportunities for urban planning and infrastructure development as a result of the integration of smart mobility solutions.  Micro mobility solutions, such as e-scooters and bike-sharing, offer convenient last-mile transportation option. Digital payment systems and mobile applications cater to commuters. The demand for sustainable and connected transportation solutions drives innovation and collaboration within the Smart Mobility Market.

SMART MOBILITY AI MARKET REPORT COVERAGE:

REPORT METRIC

DETAILS

Market Size Available

2023 - 2030

Base Year

2023

Forecast Period

2024 - 2030

CAGR

19.8%

Segments Covered

By Element, Solutions, Technology, End-User, and Region

Various Analyses Covered

Global, Regional & Country Level Analysis, Segment-Level Analysis, DROC, PESTLE Analysis, Porter’s Five Forces Analysis, Competitive Landscape, Analyst Overview on Investment Opportunities

Regional Scope

North America, Europe, APAC, Latin America, Middle East & Africa

Key Companies Profiled

TomTom N.V. (Netherlands), Xilinx, Inc. (United States), Cubic Corporation (United States), Robert Bosch GmbH (Germany), IBM Corporation (United States), Cisco Systems, Inc. (United States), Siemens AG (Germany), Continental AG (Germany), Daimler AG (Germany), Thales Group (France)

Smart Mobility AI Market Segmentation: By Element

  • Ride-Sharing

  • Car-Sharing

  • Bike Commuting

The smart mobility market is categorized into ride-sharing, car-sharing, and bike commute. The ride-sharing segment had the highest market share. The growth is due to the growing use of ride-sharing services. Ride-sharing companies are using cutting-edge artificial intelligence technologies to enhance the user experience and maximize their profit shares.

Global ride-sharing holds a commanding 74% share of the U.S in 2023. The market is in over 70 countries.  Its early entry, strategic partnerships, and focus on innovation have propelled its dominance. The market landscape has changed because of the vast network of drivers and riders. Competition, changing preferences, and regulatory challenges pose threats to the ride-sharing market, but the past success and innovation of the company suggest it will remain a dominant force.

Factors such as cycling's popularity, environmental benefits, infrastructure growth, and affordability are driving the rapid growth of bike commute. Increasing demand for cycling infrastructure, driving cycling industry innovation, changing perceptions of cycling, reducing transportation's environmental impact, and creating healthier communities are all influencing the market landscape.  Bike commute's health benefits and affordability make it a positive force for change in transportation.

Smart Mobility AI Market Segmentation: By Solutions

  • Traffic Management 

  • Parking Management 

  • Mobility Management

  • Others

Traffic management, parking management, mobility management, and others are some of the solutions in the smart mobility market. The mobility management segment had the highest market share. Rapid urbanization and the growing population may be to blame for the growth. Traffic management systems using artificial intelligence can help reduce travel time and enhance safety on roads. These systems can reduce carbon emissions by avoiding idling and stop-and-go traffic.

The demand for smart cities and connected vehicles, the rise of ride-sharing and car-sharing services, and the need for sustainable transportation solutions make Traffic management the fastest-growing segment in the by solutions market.

Mobility management solutions enable real-time traffic monitoring, intelligent route planning, and dynamic pricing strategies, empowering commuters and businesses to make informed decisions. As mobility management solutions evolve and integrate with emerging technologies, their impact on the transportation landscape is bound to intensify, transforming transportation into a more intelligent, connected, and sustainable environment.

Traffic management holds a significant position in the by solutions market. The growth is being propelled by the increasing congestion in the cities. It is crucial to implement intelligent transportation systems. Real-time adjustments to traffic signals, signs, and other traffic management devices can be made using advanced technologies.

The need for more efficient traffic management systems is one of the factors driving the growth of this market. In cities around the world, ITS are being used to improve transportation systems. The traffic management market is growing because of this adoption.

Smart Mobility AI Market Segmentation: By Technology

  • Autonomous Vehicles

  • Connected Vehicles

  • Fleet Management

  • Others

The market is dominated by automated vehicles.  By technology, the projected CAGR is 60. The demand for safer and more efficient transportation is driving its growth. The potential to significantly reduce road accidents, improve efficiency, and expand mobility options for all can be achieved by autonomously driving vehicles. The impact of Autonomous Vehicles on the transportation landscape is bound to intensify as technology continues to evolve.

Connected Vehicles, with a projected CAGR of 48. Enhancements in safety, efficiency, and driving experience are some of the reasons for their growth. Connected vehicles will enable safer, more efficient, and more connected mobility in smart cities.

Each segment offers unique opportunities for businesses to develop cutting-edge solutions that address specific transportation challenges and enhance the overall mobility experience.

Smart Mobility AI Market Segmentation: by End-User

  • Automotive OEMs

  • Tier 1 Suppliers

  • Technology Companies

  • Transportation Companies

  • Government

The Smart Mobility Artificial Intelligence Market is driven by a variety of end- users. The automotive industry is at the forefront of developing and implementing smart mobility artificial intelligence solutions.  Tier 1 suppliers play a crucial role in providing components and systems for cutting-edge vehicles. The intelligent infrastructure and services that underpin smart mobility solutions are powered by technology companies.

Artificial intelligence is being used to improve the efficiency and reliability of transportation services. Governments are playing a key role in promoting smart mobility initiatives, investing in infrastructure, establishing regulatory frameworks, and encouraging the adoption of smart mobility solutions.

Technology Companies hold the highest market share in the Market Segmentation by End-User with a projected CAGR of 25% from 2024-2030. Their dominance is due to their technological expertise, heavy investments in research and development, strategic partnerships with automotive OEMs, and data-driven approach. The future of transportation has been shaped by this.

The second-fastest growing segment in the market is automotive original equipment manufacturers. Their direct involvement in vehicle development, established brand recognition, manufacturing capabilities, partnerships with technology companies, and vertical integration are fueling their growth. The future of transportation is being shaped by automotive OEMs.

Smart Mobility AI Market Segmentation: Regional Analysis

  • North America

  • Asia-Pacific

  • Europe

  • South America

  • Middle East and Africa

In 2023, the North America region had the largest share of the market. The adoption of advanced technologies in the United States is one of the reasons for the growth. Some of the top technology and mobility companies are based in this region and invest a lot in artificial intelligence. IBM introduced the concept of smart cities as part of its Smart Planet initiative.

North America has the highest market share in the global connected and self-drive vehicle market due to supportive government regulations, technological advancement, and industry collaboration. The region has been at the forefront of CAV innovation and adoption.

Asia-Pacific (APAC) region is the fastest growing region the population is growing and disposable income is increasing in the region as well as environmental condition of the region plays a vital role in increase demand of smart AI initiatives.

Asia-Pacific has the fastest-growing market share for connected and automated vehicles due to dense urban environments, government support, technological expertise, and growing consumer demand. The market landscape is being influenced by these factors.

COVID-19 Impact Analysis on the Global Medical Tourism Market:

The global smart mobility artificial intelligence market was negatively impacted by the COVID-19 Pandemic. Major mobility companies' services were hampered by the implementation of travelling restrictions across several nations. Due to COVID-19 disruptions were caused in supply chain and distribution of automobile as a result manufacturing process got slowed and, in some cases, it got shutdown. Artificial intelligence faced workforce shortages due to the social distancing restrictions. The demand for smart mobility solutions was negatively impacted by these factors. The global smart mobility artificial intelligence market is projected to grow once the restrictions are lifted. Demand for ride-sharing and public transportation services has been negatively impacted by the COVID-19 Pandemic. It highlighted the importance of resilient and flexible transportation systems and accelerated the adoption of digital solutions, such as app-based bookings and delivery services.

Latest Trends/ Developments:

The future of transportation is being shaped by smart mobility trends. More than 50% of the sales will be driven by electric vehicles with an aim to reduce global carbon emissions. The market for self-drive vehicles is projected to reach $556 billion by the end of the decade. Mobility-as-a-service platforms integrate various modes of travel. The smart transportation market is projected to be worth more than 200 billion dollars by the end of the decade. The global value of shared mobility services could grow from $444 billion to $801 billion. Micro mobility solutions, data analytics, and smart city integration contribute to the transformation of the smart mobility landscape. The trends drive sustainable transportation, enhanced connectivity, and improved user experiences.

Key Players:

  1. TomTom N.V. (Netherlands)

  2. Xilinx, Inc. (United States)

  3. Cubic Corporation (United States)

  4. Robert Bosch GmbH (Germany)

  5. IBM Corporation (United States)

  6. Cisco Systems, Inc. (United States)

  7. Siemens AG (Germany)

  8. Continental AG (Germany)

  9. Daimler AG (Germany)

  10. Thales Group (France)

 

  • In September 2022, Wistron AiEdge Corporation introduced three breakthrough solutions to support its vision of making mobility smarter, more efficient, and environment-friendly. The core of the application development platform is called ZigNeurons, and it uses advanced vision recognition and data pattern analysis to create custom mobility solutions. A reduction in traffic accidents can be achieved by using a data-driven fleet management platform that uses artificial intelligence to coach drivers. A foundation for future smart railway transportation can be found in the cloud-based management platform ZigRail.

 

 

 

 

 

Chapter 1. Smart Mobility AI Market – Scope & Methodology
1.1    Market Segmentation
1.2    Scope, Assumptions & Limitations
1.3    Research Methodology
1.4    Primary Sources
1.5    Secondary Sources 
Chapter 2. Smart Mobility AI Market  – Executive Summary
2.1    Market Size & Forecast – (2024 – 2030) ($M/$Bn)
2.2    Key Trends & Insights
               2.2.1    Demand Side
               2.2.2    Supply Side
2.3    Attractive Investment Propositions
2.4    COVID-19 Impact Analysis 
Chapter 3. Smart Mobility AI Market – Competition Scenario
3.1    Market Share Analysis & Company Benchmarking
3.2    Competitive Strategy & Development Scenario
3.3    Competitive Pricing Analysis
3.4    Supplier-Distributor Analysis 
Chapter 4. Smart Mobility AI Market - Entry Scenario
4.1    Regulatory Scenario
4.2    Case Studies – Key Start-ups
4.3    Customer Analysis
4.4    PESTLE Analysis
4.5    Porters Five Force Model
               4.5.1    Bargaining Power of Suppliers
               4.5.2    Bargaining Powers of Customers
               4.5.3    Threat of New Entrants
               4.5.4    Rivalry among Existing Players
               4.5.5    Threat of Substitutes 
Chapter 5. Smart Mobility AI Market – Landscape
5.1    Value Chain Analysis – Key Stakeholders Impact Analysis
5.2    Market Drivers
5.3    Market Restraints/Challenges
5.4    Market Opportunities 
Chapter 6. Smart Mobility AI Market – By Element
6.1    Introduction/Key Findings   
6.2    Ride-Sharing
6.3    Car-Sharing
6.4    Bike Commuting
6.5    Y-O-Y Growth trend Analysis By Element
6.6    Absolute $ Opportunity Analysis By Element, 2024-2030 
Chapter 7. Smart Mobility AI Market – By Solutions
7.1    Introduction/Key Findings   
7.2    Traffic Management 
7.3    Parking Management 
7.4    Mobility Management
7.5    Others 
7.6    Y-O-Y Growth  trend Analysis By Solutions
7.7    Absolute $ Opportunity Analysis By Solutions, 2024-2030 
Chapter 8. Smart Mobility AI Market – By Technology
8.1    Introduction/Key Findings   
8.2    Autonomous Vehicles
8.3    Connected Vehicles
8.4    Fleet Management
8.5    Others
8.6    Y-O-Y Growth trend Analysis By Technology
8.7    Absolute $ Opportunity Analysis By Technology, 2024-2030
Chapter 9. Smart Mobility AI Market – By End-User
9.1    Introduction/Key Findings   
9.2    Automotive OEMs
9.3    Tier 1 Suppliers
9.4    Technology Companies
9.5    Transportation Companies
9.6    Government
9.7    Y-O-Y Growth trend Analysis By End-User 
9.8    Absolute $ Opportunity Analysis By End-User, 2024-2030 
Chapter 10. Smart Mobility AI Market, By Geography – Market Size, Forecast, Trends & Insights
10.1    North America
               10.1.1    By Country
                              10.1.1.1    U.S.A.
                              10.1.1.2    Canada
                              10.1.1.3    Mexico
               10.1.2    By Element
                              10.1.2.1    By Solutions
               10.1.3    By Technology
               10.1.4    Countries & Segments - Market Attractiveness Analysis
10.2    Europe
               10.2.1    By Country
                              10.2.1.1    U.K
                              10.2.1.2    Germany
                              10.2.1.3    France
                              10.2.1.4    Italy
                              10.2.1.5    Spain
                              10.2.1.6    Rest of Europe
               10.2.2    By Element
               10.2.3    By Solutions
               10.2.4    By Technology
               10.2.5    By End-User
               10.2.6    Countries & Segments - Market Attractiveness Analysis
10.3    Asia Pacific
               10.3.1    By Country
                              10.3.1.1    China
                              10.3.1.2    Japan
                              10.3.1.3    South Korea
                              10.3.1.4    India      
                              10.3.1.5    Australia & New Zealand
                              10.3.1.6    Rest of Asia-Pacific
               10.3.2    By Element
               10.3.3    By Solutions
               10.3.4    By Technology
               10.3.5    By End-User
               10.3.6    Countries & Segments - Market Attractiveness Analysis
10.4    South America
               10.4.1    By Country
                              10.4.1.1    Brazil
                              10.4.1.2    Argentina
                              10.4.1.3    Colombia
                              10.4.1.4    Chile
                              10.4.1.5    Rest of South America
               10.4.2    By Element
               10.4.3    By Solutions
               10.4.4    By Technology
               10.4.5    By End-User
               10.4.6    Countries & Segments - Market Attractiveness Analysis
10.5    Middle East & Africa
               10.5.1    By Country
                              10.5.1.1    United Arab Emirates (UAE)
                              10.5.1.2    Saudi Arabia
                              10.5.1.3    Qatar
                              10.5.1.4    Israel
                              10.5.1.5    South Africa
                              10.5.1.6    Nigeria
                              10.5.1.7    Kenya
                              10.5.1.8    Egypt
                              10.5.1.9    Rest of MEA
               10.5.2    By Element
               10.5.3    By Solutions
               10.5.4    By Technology
               10.5.5    By End-User
               10.5.6    Countries & Segments - Market Attractiveness Analysis 
Chapter 11. Smart Mobility AI Market – Company Profiles – (Overview, Product Portfolio, Financials, Strategies & Developments)
11.1    TomTom N.V. (Netherlands)
11.2    Xilinx, Inc. (United States)
11.3    Cubic Corporation (United States)
11.4    Robert Bosch GmbH (Germany)
11.5    IBM Corporation (United States)
11.6    Cisco Systems, Inc. (United States)
11.7    Siemens AG (Germany)
11.8    Continental AG (Germany)
11.9    Daimler AG (Germany)
11.10    Thales Group (France)

Download Sample

The field with (*) is required.

Choose License Type

$

2500

$

4250

$

5250

$

6900

Frequently Asked Questions

 The Smart Mobility AI Market was valued at USD 155.72 billion and is projected to reach a market size of USD 551.50 billion by the end of 2030. Over the forecast period of 2023-2030, the market is projected to grow at a CAGR of 19.8%. 

 Government investments in the smart mobility industry and improved transportation systems are some of the Smart Mobility Artificial Intelligence Market Drivers.

Based on Element, the Smart Mobility AI Market is segmented into Ride-Sharing, Car-Sharing, and Bike-Commuting.

North America is the most dominant region for the Smart Mobility AI Market.

TomTom N.V. Xilinx, Inc., Cubic Corporation, Robert Bosch GmbH, IBM Corporation, Cisco Systems, Inc., Siemens AG, Continental AG, Daimler AG, Thales Group.

Analyst Support

Every order comes with Analyst Support.

Customization

We offer customization to cater your needs to fullest.

Verified Analysis

We value integrity, quality and authenticity the most.