IT-thumbnail.png

Crowd Sentiments Analytics Market Research Report – Segmentation By Vertical (BFSI, Retail, Transportation and Logistics, Media and Entertainment, Healthcare and Life Sciences), By Application (Customer Management, Marketing Campaign Measurement, Market Forecasting, Pricing Analytics, Revenue Optimization), By Deployment Mode (Cloud-based, On-Premise), By Organization Size (SMEs, Large-scale Enterprises), and Region - Size, Share, Growth Analysis | Forecast (2025– 2030)

Crowd Sentiments Analytics Market Size (2025 – 2030)

The Global Crowd Sentiments Analytics Market was valued at USD 1.89 billion and is projected to reach a market size of USD 13 billion by the end of 2030. Over the forecast period of 2025-2030, the market is projected to grow at a CAGR of 47.06%. 

From 2025 to 2030, the global crowd-sentiment analytics industry is expected to see notable expansion. The rising use of sophisticated analytics solutions to analyze crowd behavior and sentiments across different sectors is driving this development.

Key Market Insights:

  • Using these solutions to improve medical services and increase patient experiences, the biggest user of group sentiment analysis is the healthcare industry.
  • Using sentiment data, the Banking and Financial Services Industry (BFSI) is the fastest-growing sector seeking customer moods and market trends.
  • Rapid digitization and the spread of social media platforms are driving forces behind the expected highest growth rate in the Asia Pacific area.
  • Because of their flexibility and cost savings, companies are increasingly turning to cloud-based sentiment analysis tools.

Crowd Sentiments Analytics Market Drivers:

Leveraging AI for Sentiment Analysis: Transforming Social Media Insights.

Social media sites' exponential growth has created an enormous volume of unstructured data. Digital data covers text, pictures, movies, and more; roughly 90% is unstructured. These numbers call for sophisticated analytics to generate useful insights, increasing the need for sentiment analysis solutions. Companies use these resources to keep track of brand image, watch consumer attitudes, and adjust tactics accordingly.

The recent advancements in Artificial Intelligence (AI) have helped improve the accuracy and efficiency of sentiment analysis.

Including artificial intelligence and machine learning in sentiment analysis has greatly raised its effectiveness and precision. By identifying patterns and subtleties in human language from large datasets, AI-powered systems improve sentiment detection's accuracy by using vast databases. These developments enable companies to analyze and react to customer comments rapidly, therefore making sentiment analysis more widely available across several sectors.

The increasing focus on customer experience has led to a high demand for sentiment analytics tools.

Businesses are giving customer comments and sentiment top priority to enhance goods and services, therefore, fueling the need for sentiment analytics solutions. Analyzing consumer feedback enables businesses to find areas of innovation, increase customer happiness, and foster brand loyalty. This emphasis on client-centered approaches has resulted in more spending on sentiment analytics solutions.

The increased need for public safety and security has led to increased adoption of crowd sentiment analytics.

To keep safety and security guaranteed and to supervise and control public gatherings, governments and companies are starting to use crowd sentiment data analysis. Authorities may recognize possible hazards, stop events, and react promptly to disasters by studying crowd emotions and behavior. Maintaining public order and safety depends more and more on this use of sentiment analysis.

Crowd Sentiments Analytics Market Restraints and Challenges:

Concerns related to data privacy and security are a big challenge faced by the crowd sentiment analytics market.

Significant privacy concerns come from the gathering and processing of personal data from social media channels. Analytical uses call for user data sharing without explicit authorization, hence raising legal and ethical issues. Significant effects on social norms are the possibilities for interpretation and abuse of sentiment data.

The high implementation cost is a major market challenge that prohibits SMEs from adopting it.

Using sophisticated sentiment analysis tools calls for significant technology and expert staff investment. Particularly for tiny and medium-sized businesses, these expenses can be restrictive and might limit general use.

Language and contextual nuances are a big market hurdle as they hinder the accuracy of sentiment interpretation.

Interpreting feelings across many different languages, dialects, and cultural settings is still difficult. Misunderstandings brought about by sarcasm, idioms, and local expressions may, therefore, compromise the accuracy of the study.

The integration of this with the existing systems is challenging due to various complexities, thereby impacting market growth.

Adding emotional analytics to current business processes and platforms can be complicated. Seamless integration is helped by compatibility problems, data silos, and the need for system upgrades.

Crowd Sentiments Analytics Market Opportunities:

The integration of crowd sentiment analytics with alternative data sources presents a great opportunity for the market to grow further.

Combining consumer sentiment surveys with alternative data sources like credit card transactions and consumer sentiment surveys provides a full picture of market trends using crowd sentiment analytics. This integration lets companies better forecast consumer behavior, therefore improving their decision-making processes. For example, more sophisticated investment approaches result from the growing use of alternative data by investors to forecast retail performance during peak seasons.

The continuous advancements in the fields of Artificial Intelligence (AI) and Machine Learning (ML) enhance the accuracy of the sentiment analytics tools.

The ongoing development of artificial intelligence and machine learning systems offers great chances to improve the efficiency and accuracy of sentiment analysis tools. These developments enable companies to analyze and answer consumer opinions through the real-time handling of big volumes of data. Improved artificial intelligence systems also let the observation of subtle emotions, therefore increasing our understanding of consumer choices and market dynamics.

A rise in the adoption of sentiment analytics in the field of financial analytics allows the market to expand its reach.

To measure market sentiment and guide investment choices, the financial industry is turning more and more to crowd-sentiment analytics. The goal of partnerships between financial institutions and social networks is to create data analytics solutions using customer-created content for financial insights. For instance, Reddit's collaboration with Intercontinental Exchange aims to develop analytic solutions that support financial experts in risk management and investment strategies, thus underscoring the increasing relevance of sentiment analysis in finance.

CROWD SENTIMENTS ANALYTICS MARKET REPORT COVERAGE:

REPORT METRIC

DETAILS

Market Size Available

2024 - 2030

Base Year

2024

Forecast Period

2025 - 2030

CAGR

47.06%

Segments Covered

By Vertical, organisational size, deployment mode, application, and Region

Various Analyses Covered

Global, Regional & Country Level Analysis, Segment-Level Analysis, DROC, PESTLE Analysis, Porter’s Five Forces Analysis, Competitive Landscape, Analyst Overview on Investment Opportunities

Regional Scope

North America, Europe, APAC, Latin America, Middle East & Africa

Key Companies Profiled

Nokia Corporation, AGT International, NEC Corporation, Sightcorp, Walkbase, Spigit, Inc., Wavestore, Savanna Simulations AG, CrowdANALYTIX, Inc., Securion Systems

Crowd Sentiments Analytics Market Segmentation:

Crowd Sentiments Analytics Market Segmentation: By Vertical:

  • BFSI
  • Retail
  • Transportation and Logistics
  • Media and Entertainment
  • Healthcare and Life Sciences

The dominant segment is retail, and the fastest-growing segment is healthcare and life sciences. The retail business widely uses sentiment analysis to improve customer interaction, track consumer ideas, and refine marketing tactics. The leading adopter of sentiment analysis is retailers leveraging real-time data to tailor shopping experiences and increase consumer loyalty. To measure patient experiences, track public health trends, and react to medical emergencies like epidemics, the healthcare industry has quickly embraced sentiment analysis. The increasing focus on regulatory compliance and patient-centric treatment is fueling the growth of sentiment analytics in the industry.

Financial institutions use sentiment analytics to evaluate consumer feedback, control reputation risks, and customize services to client requirements. Retailers use sentiment analysis to grasp consumer attitudes, improve customer experiences, and maximize product lines. In transportation and logistics, this industry uses sentiment analysis to assess passenger feedback, enhance services, and control public opinion. Media businesses assess audience opinions to estimate content acceptance and prepare future projects. Healthcare companies use sentiment analysis to understand patient experiences and enhance the delivery of medical care.

Crowd Sentiments Analytics Market Segmentation: By Application:

  • Customer Management
  • Marketing Campaign Measurement
  • Market Forecasting
  • Pricing Analytics
  • Revenue Optimization

Customer Management is the dominant segment, and Marketing Campaign Measurement is the fastest-growing segment. To improve customer satisfaction, brand loyalty, and service quality, companies throughout sectors give customer sentiment analysis top priority. Sentiment analysis is the most commonly employed application since it enables companies to grasp customer needs in real time. With companies raising their digital marketing expenditure, sentiment analytics is used to gauge campaign performance. This sector is expanding fast since companies are increasingly depending on data-driven marketing techniques to lower ad expenditure and enhance customer interaction.

Understanding consumer attitudes helps improve relations management and satisfaction. Measuring marketing campaigns by examining public responses to gauge their results. Using public views and opinions to forecast market trends. Pricing analytics help to find the best possible price policies by looking at consumer attitudes. Revenue optimization is improving revenue channels via knowledge of sentiment analysis.

Crowd Sentiments Analytics Market Segmentation: By Deployment Mode

  • Cloud-based
  • On-Premise

Cloud is both the dominant and the fastest-growing segment. Organizations of every size would prefer cloud-based sentiment analytics tools because of their scalability, cost-effectiveness, and remote accessibility. Furthermore, adding to its dominance is its simplicity of integration with current corporate solutions. Accelerated by remote employment and the rising use of AI-powered analytics, the movement toward cloud computing is driving the fast expansion of sentiment analysis solutions delivered over the cloud.

Hosted on cloud systems, sentiment analytics solutions present remote access and scalability. Solutions installed inside a company’s infrastructure offer control over data and customization.

Crowd Sentiments Analytics Market Segmentation: By Organization Size

  • SMEs
  • Large-scale Enterprises

The Large-scale Enterprises are the dominant segment, and SMEs are the fastest-growing segment. Large companies have the financial and technological means to support sophisticated sentiment analytics tools. The largest consumers are those who use these methods for thorough market research, reputation control, and strategic decision-making. To get competitive intelligence, better customer interaction, and more efficient marketing campaigns, tiny and medium businesses are starting to use sentiment analytics. Affordable cloud-based alternatives have made sentiment analytics more available to small enterprises.

Smaller businesses use sentiment analysis to get competitive information. Large businesses use sentiment analysis together with thorough data-driven strategies.

Crowd Sentiments Analytics Market Segmentation: By Region:

  • North America
  • Asia-Pacific
  • Europe
  • South America
  • Middle East and Africa

North America is the leader of the market, and the Asia-Pacific region is the fastest-growing region. North America houses big sentiment analytics vendors and has a mature tech ecosystem. The strong use of artificial intelligence, machine learning, and big data analytics across sectors guarantees the region's control of the marketplace. The demand for sentiment analytics is being driven by the fast digital transformation in nations such as China, India, and Japan, combined with a flourishing e-commerce and social media scene. The area's increasing emphasis on data-driven decision-making and customer interaction is driving market expansion.

North America is an early technology adopter with substantial capital in sentiment analytics. In Europe, the emphasis on improving consumer experiences drives increasing use across several sectors. Rapid expansion in the Asia-Pacific region results from growing digitalization and the use of social media. In the Middle East and Africa, the growing interest in analytics to steer business policies is the reason behind the increasing adoption of sentiment analytics. The slow acceptance with opportunity for big development is seen in the South America region.

 

 

COVID-19 Impact Analysis on the Global Crowd Sentiments Analytics Market:

The crowd sentiments analysis industry was profoundly affected by the COVID-19 epidemic. Companies used sentiment analysis to track public emotions during the epidemic, therefore supporting crisis management and decision-making activities. For example, research has found a link between public opinion on COVID-19 and stock market changes, underlining the relevance of sentiment analysis in comprehending market behavior during health crises. Furthermore, the epidemic sped up digital evolution in all industries and raised the use of analytics tools to decode fast-shift consumer attitudes. This change underlined the importance of real-time sentiment analysis in negotiating unusual circumstances.

Latest Trends/ Developments:

By improving the accuracy and speed of sentiment analysis, the integration of AI and machine learning algorithms allows for more exact readings of sophisticated human emotions.

By quickly reacting to public opinions and current events, companies are beginning to use real-time sentiment monitoring to improve consumer involvement and satisfaction.

The worldwide relevance of sentiment analytics has grown thanks to the creation of tools able to assess emotions across several languages so that companies may serve varied markets.

Ethical data gathering and analysis are increasingly being emphasized to guarantee conformity with privacy laws and preserve public trust in sentiment analytics tools.

Key Players:

  1. Nokia Corporation
  2. AGT International
  3. NEC Corporation
  4. Sightcorp
  5. Walkbase
  6. Spigit, Inc.
  7. Wavestore
  8. Savanna Simulations AG
  9. CrowdANALYTIX, Inc.
  10. Securion Systems

Chapter 1. Crowd Sentiments Analytics Market– Scope & Methodology
   1.1. Market Segmentation
   1.2. Scope, Assumptions & Limitations
   1.3. Research Methodology
   1.4. Primary Sources`
   1.5. Secondary Sources
 Chapter 2. Global Crowd Sentiments Analytics Market– Executive Summary
   2.1. Market Size & Forecast – (2025 – 2030) ($M/$Bn)
   2.2. Key Trends & Insights
              2.2.1. Demand Side
              2.2.2. Supply Side     
   2.3. Attractive Investment Propositions
   2.4. COVID-19 Impact Analysis
 Chapter 3. Crowd Sentiments Analytics Market– Competition Scenario
   3.1. Market Share Analysis & Company Benchmarking
   3.2. Competitive Strategy & Development Scenario
   3.3. Competitive Pricing Analysis
   3.4. Supplier-Distributor Analysis
 Chapter 4. Global Crowd Sentiments Analytics Market- Entry Scenario
4.1. Regulatory Scenario
4.2. Case Studies – Key Start-ups
4.3. Customer Analysis
4.4. PESTLE Analysis
4.5. Porters Five Force Model
               4.5.1. Bargaining Power of Suppliers
               4.5.2. Bargaining Powers of Customers
               4.5.3. Threat of New Entrants
               4.5.4. Rivalry among Existing Players
               4.5.5. Threat of Substitutes
 Chapter 5. Crowd Sentiments Analytics Market- Landscape
   5.1. Value Chain Analysis – Key Stakeholders Impact Analysis
   5.2. Market Drivers
   5.3. Market Restraints/Challenges
   5.4. Market Opportunities
 
Chapter 6. Global Crowd Sentiments Analytics Market– By Vertical
6.1    Introduction/Key Findings   
6.2    BFSI
6.3    Retail
6.4    Transportation and Logistics
6.5    Media and Entertainment
6.6    Healthcare and Life Sciences
6.7    Y-O-Y Growth trend Analysis By Vertical
6.8    Absolute $ Opportunity Analysis By Vertical, 2025-2030
 
Chapter 7. Global Crowd Sentiments Analytics Market– By Application 
7.1    Introduction/Key Findings   
7.2    Customer Management
7.3    Marketing Campaign Measurement
7.4    Market Forecasting
7.5    Pricing Analytics
7.6    Revenue Optimization
7.7    Y-O-Y Growth  trend Analysis By Application 
7.8    Absolute $ Opportunity Analysis By Application , 2025-2030
 
Chapter 8. Global Crowd Sentiments Analytics Market– By Deployment Mode 
8.1    Introduction/Key Findings   
8.2    Cloud-based
8.3    On-Premise
8.4    Y-O-Y Growth trend Analysis Deployment Mode 
8.5    Absolute $ Opportunity Analysis Deployment Mode , 2023-2030
Chapter 9. Global Crowd Sentiments Analytics Market– By Organization Size  
9.1    Introduction/Key Findings   
9.2    SMEs
9.3    Large-scale Enterprises

9.4    Y-O-Y Growth trend Analysis Organization Size  
9.5    Absolute $ Opportunity Analysis Organization Size  , 2023-2030
 
Chapter 10. Crowd Sentiments Analytics Market, By Geography – Market Size, Forecast, Trends & Insights
10.1. North America
                                10.1.1. By Country
                                                10.1.1.1. U.S.A.
                                                10.1.1.2. Canada
                                                10.1.1.3. Mexico
                                10.1.2. By  Vertical
                                10.1.3. By  Deployment Mode
                                10.1.4. By Organization Size  
                                10.1.5. Application
                                10.1.6. Countries & Segments - Market Attractiveness Analysis
   10.2. Europe
                                10.2.1. By Country
                                                10.2.1.1. U.K.                         
                                                10.2.1.2. Germany
                                                10.2.1.3. France
                                                10.2.1.4. Italy
                                                10.2.1.5. Spain
                                                10.2.1.6. Rest of Europe
                                10.2.2. By  Vertical
                                10.2.3. By   Deployment Mode
                                10.2.4. By Organization Size  
                                10.2.5. Application
                                10.2.6. Countries & Segments - Market Attractiveness Analysis
10.3. Asia Pacific
                                10.3.1. By Country
                                                10.3.1.2. China
                                                10.3.1.2. Japan
                                                10.3.1.3. South Korea
                                                10.3.1.4. India      
                                                10.3.1.5. Australia & New Zealand
                                                10.3.1.6. Rest of Asia-Pacific
                                10.3.2. By  Vertical
                                10.3.3. By  Organization Size  
                                10.3.4. By Deployment Mode 
                                10.3.5. Application
                                10.3.6. Countries & Segments - Market Attractiveness Analysis
10.4. South America
                                10.4.1. By Country
                                                10.4.1.1. Brazil
                                                10.4.1.2. Argentina
                                                10.4.1.3. Colombia
                                                10.4.1.4. Chile
                                                10.4.1.5. Rest of South America
                                10.4.2. By  Application
                                10.4.3. By  Deployment Mode 
                                10.4.4. By Organization Size  
                                10.4.5. Product Type
                                10.4.6. Countries & Segments - Market Attractiveness Analysis
10.5. Middle East & Africa
                                10.5.1. By Country
                                                10.5.1.4. United Arab Emirates (UAE)
                                                10.5.1.2. Saudi Arabia
                                                10.5.1.3. Qatar
                                                10.5.1.4. Israel
                                                10.5.1.5. South Africa
                                                10.5.1.6. Nigeria
                                                10.5.1.7. Kenya
                                                10.5.1.10. Egypt
                                                10.5.1.10. Rest of MEA
                                10.5.2. By  Style
                                10.5.3. By  Deployment Mode 
                                10.5.4. By Vertical
                                10.5.5. Application
                                10.5.6. Countries & Segments - Market Attractiveness Analysis
Chapter 11. Global Crowd Sentiments Analytics Market– Company Profiles – (Overview, VerticalPortfolio, Financials, Strategies & Developments)
11.1    Nokia Corporation
11.2    AGT International
11.3    NEC Corporation
11.4    Sightcorp
11.5    Walkbase
11.6    Spigit, Inc.
11.7    Wavestore
11.8    Savanna Simulations AG
11.9    CrowdANALYTIX, Inc.
11.10    Securion Systems

Download Sample

The field with (*) is required.

Choose License Type

$

2500

$

4250

$

5250

$

6900

Frequently Asked Questions

To generate actionable insights for decision-making, crowd sentiment analyses usually use social media and other digital platforms' groups' expressed feelings and opinions.

Sentiment analysis helps businesses in the healthcare, BFSI, retail, and transportation industries improve consumer experiences, keep track of public opinion, and guide strategic decisions.

The COVID-19 epidemic underlined the need for real-time sentiment analysis to grasp public emotions and behavior, therefore accelerating the usage of sentiment analysis solutions throughout many industries.

The challenges faced by the market are data privacy concerns, expensive implementation costs, existing system integration difficulty, and guaranteeing sentiment interpretation's accuracy.

Opportunities lie in entering new markets, customizing advertising plans, connecting with IoT devices, and building multilingual analytic abilities to appeal to a worldwide audience.

Analyst Support

Every order comes with Analyst Support.

Customization

We offer customization to cater your needs to fullest.

Verified Analysis

We value integrity, quality and authenticity the most.