In 2023, the Global Artificial Intelligence in Microgrid Control Systems Market was valued at $476.852 million, and is projected to reach a market size of $1555.41 million by 2030. Over the forecast period of 2024-2030, market is projected to grow at a CAGR of 18.4%.
Industry Overview:
The increased need for sustainable energy to support the transition to net zero is one of the factors driving the growth of microgrids. Microgrids are self-contained electrical networks connecting distributed energy resources (DERs) and loads, working as a single controllable entity, and can operate on either grid-connected or islanded/isolated modes. The ability to do real-time optimization on today's sophisticated microgrids enables use cases like frequency regulation and demand response, which often require an optimization step to be performed in less than one second. AI aids in the faster and more accurate forecasting of changes in the energy supply and demand throughout a microgrid. A microgrid can successfully manage a complicated energy structure with AI, even when new factors like quickly fluctuating energy costs or renewable power generation are present. There is a need for effective and dependable control systems that can manage the complexity of these new systems because microgrids are now being installed in many areas and combined with cutting-edge technology, such as fuel cells. As a result, there is a growing demand for efficient, centralized microgrid controllers. Traditional grids are thought to be extremely inefficient because of their long-distance lines. The demand for efficient systems is growing as a result of rising fuel and energy prices, which in turn is accelerating the development of microgrid systems. The newest microgrids have an intelligent design. These sophisticated microgrids have a microgrid controller, which controls the neighborhood's batteries, generators, and building energy systems with increased sophistication. The industry is seeing an increase in demand for smart microgrid controllers and control systems. Increased investments in transmission and distribution infrastructure, a rise in energy demand, and government programs aimed at expanding access to electricity are all factors that can be ascribed to this growth.
COVID-19 pandemic impact on Artificial Intelligence in Microgrid Control Systems Market
Energy production, prices, and consumption have all changed significantly as a result of the coronavirus epidemic, which forced governments all over the world to impose restrictions on commercial activity to slow the spread of the virus. Residential or domestic electricity demand has increased as a result of individuals staying at home due to the coronavirus epidemic. As a result, there is a greater need for AI in micro-grid backup solutions because more people are working from home and require an uninterrupted and continuous supply of electricity. However, the pandemic limits have reduced the use of such systems in sectors including manufacturing, aviation, and transportation. Worldwide, distribution system operators have experienced low electricity consumption, waivers of interest on bills, and prohibitions on disconnecting during lockdowns. The integration and curtailment of photovoltaic power output have been negatively impacted by the overall fall and changes in load demand and sequencing, which has in turn reduced the use of microgrid control approaches during the pandemic.
MARKET DRIVERS:
The use of Artificial Intelligence (AI) and simulation techniques improve the management and operation of microgrids
Advanced microgrids control a variety of factors to create the cleanest, most effective, and most dependable electricity. Even under the best-case scenario, a grid-connected microgrid may have a difficult time sorting through the enormous volumes of data that are generated by the weather, shifting patterns of energy production and consumption, and constantly shifting fuel and electricity prices. AI is useful for microgrid operators, equipment suppliers, and integrators since it may be used during the planning, implementation, and operating phases of a microgrid. AI provides the quick calculation for real-time modeling of enormous amounts of data for microgrid developers, assisting them in capacity sizing choices regarding grid equipment, solar and wind configurations, and the use of electric vehicle charging infrastructure. AI offers simulation and modeling for the optimal use of controllers, solar inverters, battery systems, and other distributed energy grid resources for equipment suppliers. AI eliminates the need for grid operators and asset managers to interfere in microgrid operations, which benefits microgrid operators. AI modeling and simulation results aid in guiding microgrid management choices. To assist all stakeholders who manage microgrids in making wise decisions, machine learning and artificial intelligence are used to process the vast amounts of available data. They may use AI to assist them to weigh options for manual vs. autonomous operations, power distribution and storage, managing renewable variability, improving forecasting, lowering energy costs, and enhancing resilience.
The key factors driving the global market are the rapid advancement of IoT and communication technologies and rising concerns about carbon emissions
The increased use of microgrid control systems in large power plants and the manufacturing sector is also having an impact on the market for these systems globally. The global microgrid control system market is anticipated to develop shortly as a result of an increase in clean energy projects and an increase in the adoption of renewable energy sources globally. The majority of homeowners and small and medium-sized businesses select micro-grid control systems to meet their needs because of how affordable this option is. Massive and complicated grid systems are being used by educational institutions and the defence industry due to their successful operation and outcomes. In addition, major investments are being made in the micro-grid system by firms who wish to build their private power network to provide backup power and an uninterrupted power supply.
MARKET RESTRAINTS:
A significant challenge to the market could arise from the high cost of the installation and upkeep of the AI in the microgrid control system
The market for AI in microgrid control systems may be seriously threatened by the high installation and maintenance costs involved. Due to the special need for professional staff during the procedure, the cost of routine maintenance is relatively expensive. The system's running expenses will consequently rise as a result of this. Small manufacturing enterprises are looking for affordable solutions for a steady supply of power as a result. The enormous benefits that microgrid control systems provide to consumers more than offset their high costs. Also, there is a need to create some awareness among the industries about micro-grid control systems about the new technological advancements.
ARTIFICIAL INTELLIGENCE IN MICROGRID CONTROL SYSTEMS MARKET REPORT COVERAGE:
REPORT METRIC |
DETAILS |
Market Size Available |
2023 - 2030 |
Base Year |
2023 |
Forecast Period |
2024 - 2030 |
CAGR |
18.4% |
Segments Covered |
By Type, End Users and Region |
Various Analyses Covered |
Global, Regional & Country Level Analysis, Segment-Level Analysis, DROC, PESTLE Analysis, Porter’s Five Forces Analysis, Competitive Landscape, Analyst Overview on Investment Opportunities |
Regional Scope |
North America, Europe, APAC, Latin America, Middle East & Africa |
Key Companies Profiled |
Woodward Inc., S&C Electric Company,RT Soft, Emerson Electric,Schneider Electric, Eaton Corporation, Ontech Electric Corporation, Siemens, General Electric, Schweitzer Engineering Laboratories, Inc., ABB |
This research report on the global Artificial Intelligence in Microgrid Control Systems Market has been segmented and sub-segmented based on type, end users, and region.
On-grid
Off-grid
Hybrid
Based on Type, the Artificial Intelligence in Microgrid Control Systems is bifurcated into On-grid, Off-grid, and Hybrid. The off-grid segment is anticipated to experience rapid expansion through 2030 due to the fast advancements in PV and wind power technologies for off-grid hybrid systems, which are estimated to reduce the negative consequences of utilizing diesel to generate electricity in distant off-grid settlements. This is because remote/island microgrid control systems are being adopted widely as a result of the growing electrification of rural and distant locations worldwide. Remote and island networks can function without external power sources and offer power security in the event of a power outage. This level of energy self-sufficiency supports the widespread use of remote/island microgrid systems.
A grid network that is fully connected and built to deliver electricity following the needs of the relevant end user is referred to as being grid-connected or grid-tied. Among the available microgrid alternatives, the specific advantage of being a cost-effective solution has led the majority of homeowners and small-sized businesses to pick grid-connected microgrid systems to meet their respective power needs. The military and defence sector, as well as university campuses, have large-scale grid-tied microgrid networks, which has accelerated the market's adoption of control systems. Due to the upcoming shifts toward the development of a connected society, manufacturers have made substantial expenditures to build a private network of electricity in case conventional sources of power fail.
Utilities
Cities & Municipalities
Defense
Industrial
Others
Based on End Users, the Artificial Intelligence in Microgrid Control Systems is bifurcated into Utilities, Industrial, Cities & Municipalities, Defense, and Others. In 2021, the Utility sector accounted for a sizable portion of the global market owing to an increase in government spending on microgrid management systems. Several commercial companies have set up power microgrid control systems to meet the domestic electricity demand thanks to rising primary energy consumption and financial incentives from governments. This expansion is linked to increased electrification project investments, which heavily utilize microgrid technology.
North America
Europe
Asia-Pacific
Rest of the World
North America is the market leader for artificial intelligence in microgrid control systems globally due to the increased focus on grid modernization and the rise in investments in the country's grid technology upgrade. The market expansion in this region is being fueled by increased use of sustainable power sources and expanding smart grid activities. The market for conventional grids is coming under more and more strain. The market for integrated renewable energy microgrid control systems is being further stimulated by the US EPA's (Environmental Policy Agency) significant greenhouse gas legislation and the country's urgent need to upgrade its outdated infrastructure. The demand from institutions or campus applications has expanded as a result of the growing government assistance in the form of financing and state-level resilience programs, which is a key driver for the expansion of the US market.
Europe is also a lucrative region of the global Artificial Intelligence in the microgrid control system market. It is currently investing heavily in the modernization of the electrical grid. In nations like Germany and the UK, there is a renewed emphasis on renewable energy sources. Investors and project developers adopted the microgrid control system owing to enticing incentives such as tax credits, feed-in tariffs, and the commercialization of the technology. The region's microgrid control system market will also be driven by factors like rising power demand, government regulations on energy efficiency, the inflow of renewable energy sources into the energy mix, and rehabilitation, modernization, and upgrade of aging grid infrastructure. To fulfill the EU's new aim of reducing emissions by up to 55% by 2030, TenneT, the transmission operator in the Netherlands and Germany, is creating new connections, reinforcing and expanding its grid, and modernizing system operations.
The Asia Pacific Artificial Intelligence in Microgrid Control Systems Market is anticipated to expand significantly with a CAGR of 5.7%, over the forecast period. The modernization of electrical infrastructure, rising investments in smart micro-grid control technology, and growing reliance on renewable energy sources are the factors responsible for this growth. To keep up with the rising power demand, nations like China and India are making significant investments in electrification projects, network moderation, and network upgrades.
Major Key Players in the Market
Woodward Inc.
S&C Electric Company
RT Soft
Emerson Electric
Schneider Electric
Eaton Corporation
Ontech Electric Corporation
Siemens
General Electric
Schweitzer Engineering Laboratories, Inc.
ABB
Notable happenings in the Artificial Intelligence in Microgrid Control Systems Market in the recent past:
Product Launch- In January 2021, Schneider Electric announced the availability of its EcoStruxure Microgrid Solution for small and medium buildings in Canada to increase energy resilience, minimize energy costs, and lower the carbon footprint of industrial buildings, educational institutions, and healthcare facilities.
Partnership- In May 2021- Ameresco and Fort Hunter teamed up to install a resilient, secure, and sustainable microgrid project.
Chapter 1. Artificial Intelligence in Microgrid Control Systems Market – Scope & Methodology
1.1. Market Segmentation
1.2. Assumptions
1.3. Research Methodology
1.4. Primary Sources
1.5. Secondary Sources
Chapter 2. Artificial Intelligence in Microgrid Control Systems Market – Executive Summary
2.1. Market Size & Forecast – (2024 – 2030) ($M/$Bn)
2.2. Key Trends & Insights
2.3. COVID-19 Impact Analysis
2.3.1. Impact during 2024 - 2030
2.3.2. Impact on Supply – Demand
Chapter 3. Artificial Intelligence in Microgrid Control Systems Market – Competition Scenario
3.1. Market Share Analysis
3.2. Product Benchmarking
3.3. Competitive Strategy & Development Scenario
3.4. Competitive Pricing Analysis
3.5. Supplier - Distributor Analysis
Chapter 4. Artificial Intelligence in Microgrid Control Systems Market Entry Scenario
4.1. Case Studies – Start-up/Thriving Companies
4.2. Regulatory Scenario - By Region
4.3 Customer Analysis
4.4. Porter's Five Force Model
4.4.1. Bargaining Power of Suppliers
4.4.2. Bargaining Powers of Customers
4.4.3. Threat of New Entrants
4.4.4. Rivalry among Existing Players
4.4.5. Threat of Substitutes
Chapter 5. Artificial Intelligence in Microgrid Control Systems Market - Landscape
5.1. Value Chain Analysis – Key Stakeholders Impact Analysis
5.2. Market Drivers
5.3. Market Restraints/Challenges
5.4. Market Opportunities
Chapter 6. Artificial Intelligence in Microgrid Control Systems Market – By Type
6.1. On-grid
6.2. Off-grid
6.3. Hybrid
Chapter 7. Artificial Intelligence in Microgrid Control Systems Market – By End Users
7.1. Utilities
7.2. Cities & Municipalities
7.3. Defense
7.4. Industrial
7.5. Others
Chapter 8. Artificial Intelligence in Microgrid Control Systems Market- By Region
8.1. North America
8.2. Europe
8.3. Asia-Pacific
8.4. Latin America
8.5. The Middle East
8.6. Africa
Chapter 9. Artificial Intelligence in Microgrid Control Systems Market – key players
9.1 Woodward Inc.
9.2 S&C Electric Company
9.3 RT Soft
9.4 Emerson Electric
9.5 Schneider Electric
9.6 Eaton Corporation
9.7 Ontech Electric Corporation
9.8 Siemens
9.9 General Electric
9.10 Schweitzer Engineering Laboratories, Inc.
9.11 ABB
2500
4250
5250
6900
Analyst Support
Every order comes with Analyst Support.
Customization
We offer customization to cater your needs to fullest.
Verified Analysis
We value integrity, quality and authenticity the most.