The market for global artificial intelligence-based materials was estimated to be worth USD 6 billion in 2023 and is expected to increase to USD 19.11 billion by 2030, with a projected compound annual growth rate (CAGR) of 18% from 2024 to 2030.
Materials science uses artificial intelligence (AI) for design, deployment, and discovery. AI can assist in the analysis of structural properties, prediction of material behavior, and design of novel materials with improved features. By using fewer components to attain the desired strength and creating materials with simpler compositions that are easier to recycle, AI can also aid in the development of more sustainable materials.
Key Market Insights:
The integration of artificial intelligence (AI) into a wide range of technology products and business activities is being actively pursued by 22% of companies. Investments in AI-based materials research and development surged by 60% in the past year, reflecting increasing industry confidence and funding. Adoption rates of AI-driven materials optimization tools soared by 75% among major manufacturing firms, highlighting the growing recognition of AI's potential to streamline processes and enhance product performance. The global market share of AI-based materials in the automotive sector reached an all-time high of 30%, signaling widespread adoption and integration of AI technologies in vehicle manufacturing. Despite the advancements, 20% of small to medium-sized enterprises (SMEs) still face barriers to implementing AI-based materials due to cost constraints. Implementing government-backed subsidies and grants for SMEs could alleviate financial burdens and promote broader adoption within the market.
Global Artificial Intelligence-Based Materials Market Drivers:
AI-driven algorithms are revolutionizing material discovery, predicting properties, and identifying tailored candidates across industries with unprecedented speed and precision.
The ceaseless advancement of artificial intelligence (AI) calculations has revolutionized material revelation and plan forms. AI-driven devices empower analysts to investigate endless fabric spaces, foresee properties, and distinguish promising candidates with exceptional speed and precision. By leveraging machine learning and prescient analytics, researchers can quicken the advancement of novel materials custom-fitted for particular applications, driving advancement in businesses from cars to healthcare.
Improved fabricating effectiveness and quality control are boosting the market.
AI advances are reshaping fabricating forms by optimizing proficiency and guaranteeing high-quality yield. Machine learning calculations analyze information from generation lines in real-time, distinguishing designs and irregularities to streamline operations and minimize squandering. Moreover, AI-powered quality control frameworks empower robotized review and imperfection discovery, diminishing the probability of defective items coming to the market. As a result, the producer's involvement expanded efficiency, diminished costs, and upgraded client fulfillment.
The integration of AI in material science is enabling its development.
The integration of AI in materials science is playing an urgent part in progressing supportability activities. AI calculations encourage the advancement of eco-friendly materials by foreseeing natural impacts, optimizing asset utilization, and planning recyclable or biodegradable choices. From renewable vitality innovations to eco-conscious bundling arrangements, AI-based materials contribute to a more feasible future by minimizing carbon footprints and relieving natural debasement.
Global Artificial Intelligence-Based Materials Market Restraints and Challenges:
Security concerns can be a major barrier.
One noteworthy restriction confronting the worldwide artificial intelligence-based materials market revolves around information security. As AI frameworks intensely depend on endless sums of information for preparation and operation, concerns emerge concerning the assurance of delicate data. Guaranteeing compliance with information security directions such as GDPR and actualizing strong cybersecurity measures are basic challenges for companies working in this space. Disappointment to address these concerns may lead to administrative fines, reputational harm, and misfortune of buyer belief.
The lack of a skilled workforce is a challenge.
Another challenge preventing the development of the AI-based materials market is the deficiency of talent and mastery in both AI advances and materials science. Creating AI-driven arrangements for material planning, revelation, and optimization requires intriguing information and specialized abilities. Be that as it may, the request for qualified experts in this field regularly surpasses the accessible ability pool, leading to enrollment troubles and extended delays. Bridging this aptitude hole by focusing on instruction and preparing programs is vital for cultivating development and competitiveness within the industry.
Associated costs create hindrances.
The tall beginning venture costs related to executing AI-based material arrangements pose a noteworthy boundary for businesses, especially small and medium-sized enterprises (SMEs). Building and conveying AI calculations, securing essential equipment and program foundations, and coordinating AI advances into existing workflows require significant budgetary assets. For numerous companies, particularly those with restricted budgets, these forthright costs may hinder selection and prevent innovative headway. Creating cost-effective AI arrangements, investigating collaborative organizations, and incentivizing speculation through government awards or appropriations are potential procedures to address this challenge and advance broader market appropriation.
Global Artificial Intelligence-Based Materials Market Opportunities:
Collaborations are beneficial.
One noticeable opportunity inside the worldwide counterfeit intelligence-based materials market lies in cultivating collaborative associations between industry players, investigative teachers, and innovation suppliers. Collaborations empower access to different abilities, assets, and datasets, encouraging quick advancement in materials planning, disclosure, and optimization. By leveraging complementary qualities and sharing information, partners can overcome specialized obstructions, drive breakthrough disclosures, and open unused roads for commercialization. Collaborative activities also advance information trade, ability improvement, and the foundation of industry measures, which assist in improving the competitiveness and supportability of the market.
Expanding into developing markets provides many possibilities.
The expansion of artificial intelligence-based materials presents critical openings for market extension into rising segments and topographical districts. Businesses such as renewable vitality, biotechnology, and economical bundling are progressively recognizing the transformative potential of AI-driven materials in tending to complex challenges and assembly-advancing customer requests. Besides, tapping into rising markets in Asia-Pacific, Latin America, and Africa offers undiscovered development potential fueled by fast industrialization, urbanization, and expanding speculation in investigation and advancement. By deliberately focusing on these burgeoning portions, companies can capitalize on early-mover points of interest, build up market nearness, and develop long-term development openings.
Personalization helps in increasing revenue.
As artificial intelligence innovations proceed to development, the capacity to customize and personalize material arrangements according to particular end-user necessities rises as a key opportunity inside the market. AI-driven calculations empower the exact fitting of fabric properties, functionalities, and execution characteristics to meet the differing application needs of different businesses. From lightweight car components to personalized therapeutic inserts, the capacity to form bespoke material arrangements offers noteworthy esteem suggestions in terms of improved item execution, proficiency, and client involvement. By grasping customization capabilities, companies can separate their offerings, capture specialty markets, and develop enduring client connections.
ARTIFICIAL INTELLIGENCE-BASED MATERIALS MARKET REPORT COVERAGE:
REPORT METRIC |
DETAILS |
Market Size Available |
2023 - 2030 |
Base Year |
2023 |
Forecast Period |
2024 - 2030 |
CAGR |
18% |
Segments Covered |
By Type of Materials, Application, End-User and Region |
Various Analyses Covered |
Global, Regional & Country Level Analysis, Segment-Level Analysis, DROC, PESTLE Analysis, Porter’s Five Forces Analysis, Competitive Landscape, Analyst Overview on Investment Opportunities |
Regional Scope |
North America, Europe, APAC, Latin America, Middle East & Africa |
Key Companies Profiled |
IBM Corporation, BASF SE, Siemens AG, General Electric Company, Google, Microsoft Corporation, NVIDIA Corporation, Arkema SA, SABIC, Intel Corporation, Materialise NV, Carbon, Inc. |
Polymers
Metals
Ceramics
Composites
Biomaterials
Others
Among the different sorts of materials portioned inside the artificial intelligence-based materials market, polymers stand out as one of the largest and fastest-growing categories. Polymers, with their different range of properties and applications, are especially well-suited for integration with AI-driven innovations. The adaptability, toughness, and tunable characteristics of polymers make them perfect candidates for advanced material plans, revelations, and optimization forms encouraged by AI calculations. From creating lightweight but high-strength materials for car and aviation applications to planning biocompatible polymers for restorative inserts and medication conveyance frameworks, the flexibility of polymers empowers inventive arrangements across different businesses. Additionally, the plenitude of polymer-related information and inquiry, combined with the versatility of polymer fabricating forms, improves the adequacy of AI-based approaches in quickening material advancement and commercialization inside the polymer section of the market.
Material Design
Process Optimization
Quality Control & Assurance
Predictive Maintenance
Others
Predictive maintenance is the largest and fastest-growing application. In predictive maintenance, data from sensors and other sources is analyzed by AI algorithms to anticipate equipment faults before they happen. This proactive strategy aids in avoiding expensive maintenance tasks and downtime. Predictive maintenance is essential for increasing overall efficiency, lowering maintenance costs, and maximizing asset performance in sectors like industrial, automotive, aerospace, and energy. The market for artificial intelligence-based materials is dominated by predictive maintenance solutions, which are widely used in a variety of industries.
Automotive
Aerospace
Electronics
Healthcare
Construction
Energy
Consumer Goods
The electronics industry is the largest growing segment. Consumer electronics, semiconductors, computers, cell phones, and electronic components are just a few of the many goods and services that fall under the umbrella of the electronics sector. Artificial intelligence-based materials are essential for improving the functionality, efficiency, and performance of electronic components and gadgets. To satisfy the changing needs of the electronics market, AI-driven materials enable the creation of improved semiconductors, conductive materials, flexible electronics, and high-performance batteries. The healthcare sector is the fastest-growing end-user. Artificial intelligence-based materials are being used more and more in the healthcare sector for a variety of purposes, such as tissue engineering, medication delivery systems, medical equipment, and diagnostic instruments. Innovative medical implants, prosthetic limbs, and wearable technology with improved biocompatibility, robustness, and usefulness can be created thanks to AI-driven materials. AI-powered materials aid in the creation of innovative drug delivery methods, formulations, and biomaterials for applications in targeted therapy, personalized medicine, and regenerative medicine during the drug research and development process. The need for cutting-edge materials that may fulfill particular clinical needs and enhance patient outcomes is being driven by the healthcare sector's increasing emphasis on precision medicine, minimally invasive procedures, and patient-centric care.
North America
Europe
Asia-Pacific
South America
Middle East & Africa
North America is the largest growing market. Eminent for its vigorous innovative foundation, progressed inquiry about offices, and critical ventures in AI investigation and improvement, North America remains at the bleeding edge of development in AI-based materials. Taking after closely behind, Europe captures a significant market share of 25%, fueled by a solid nearness of driving materials producers, inquiries about education, and government activities advancing AI appropriation in different businesses. Asia-Pacific is the fastest-growing market, driven by quick industrialization, extending car and hardware segments, and expanding ventures in AI advances over nations like China, Japan, and South Korea. South America and the Center East and Africa districts each hold a 10% market share, reflecting developing openings and developing mindfulness of AI-based materials' potential in tending to territorial challenges and cultivating financial advancement. As the worldwide demand for imaginative material arrangements proceeds to develop, these territorial market offers are anticipated to advance, affected by components such as innovative headways, administrative systems, and industry collaborations.
COVID-19 Impact Analysis on the Global Artificial Intelligence-Based Materials Market:
COVID-19 has had a multifaceted effect on the worldwide manufactured intelligence-based materials market, presenting both challenges and openings. Initially, there was a lull in material research, improvement, and fabrication activities due to extensive disruptions to supply chains, labor obstacles, and financial instability. In any case, as the widespread demand held on, the request for AI-based material arrangements surged over different businesses, including healthcare, gadgets, and buyer merchandise. The requirement for imaginative materials to back widespread reaction endeavors, such as individual defensive hardware, restorative gadgets, and antibody capacity arrangements, drove the quickened selection of AI-driven material plans, revelations, and optimization innovations. Furthermore, the move towards further work and digitalization impelled ventures in AI-enabled prescient support frameworks, quality control arrangements, and virtual collaboration stages inside the materials industry. Looking ahead, COVID-19 has underscored the significance of flexibility, nimbleness, and advancement within the materials segment, driving continued ventures in AI innovations to address advancing challenges and openings in a post-pandemic world.
Latest Trends/ Developments:
The most recent patterns and advancements within the artificial intelligence-based materials market reflect an energetic scene characterized by fast, innovative headways and advancing industry needs. One discernible trend is the amalgamation of artificial intelligence (AI) with other nascent technologies like additive manufacturing (3D printing), nanotechnology, and quantum computing, which fosters cooperative progress in material design, production, and performance enhancement. Additionally, there's a developing emphasis on supportability and circular economy standards, driving the advancement of AI-driven materials with improved recyclability, biodegradability, and eco-friendly traits. Also, the democratization of AI apparatuses and stages engages analysts, engineers, and business visionaries around the world to get to and use AI capabilities for materials advancement, cultivating collaboration and information sharing over assorted communities. Besides, the joining of AI-based materials with other intriguing areas such as biomedicine, vitality capacity, and wearable innovation opens up unused wildernesses for breakthrough revelations and transformative applications. As the industry proceeds to evolve, these patterns are balanced to shape the long-standing direction of the artificial intelligence-based materials market, driving advancement, maintainability, and societal effects on a worldwide scale.
Key Players:
IBM Corporation
BASF SE
Siemens AG
General Electric Company
Microsoft Corporation
NVIDIA Corporation
Arkema SA
SABIC
Intel Corporation
Materialise NV
Carbon, Inc.
Chapter 1. Artificial Intelligence-Based Materials Market – Scope & Methodology
1.1 Market Segmentation
1.2 Scope, Assumptions & Limitations
1.3 Research Methodology
1.4 Primary Sources
1.5 Secondary Sources
Chapter 2. Artificial Intelligence-Based Materials Market – Executive Summary
2.1 Market Size & Forecast – (2024 – 2030) ($M/$Bn)
2.2 Key Trends & Insights
2.2.1 Demand Side
2.2.2 Supply Side
2.3 Attractive Investment Propositions
2.4 COVID-19 Impact Analysis
Chapter 3. Artificial Intelligence-Based Materials Market – Competition Scenario
3.1 Market Share Analysis & Company Benchmarking
3.2 Competitive Strategy & Development Scenario
3.3 Competitive Pricing Analysis
3.4 Supplier-Distributor Analysis
Chapter 4. Artificial Intelligence-Based Materials Market Entry Scenario
4.1 Regulatory Scenario
4.2 Case Studies – Key Start-ups
4.3 Customer Analysis
4.4 PESTLE Analysis
4.5 Porters Five Force Model
4.5.1 Bargaining Power of Suppliers
4.5.2 Bargaining Powers of Customers
4.5.3 Threat of New Entrants
4.5.4 Rivalry among Existing Players
4.5.5 Threat of Substitutes
Chapter 5. Artificial Intelligence-Based Materials Market – Landscape
5.1 Value Chain Analysis – Key Stakeholders Impact Analysis
5.2 Market Drivers
5.3 Market Restraints/Challenges
5.4 Market Opportunities
Chapter 6. Artificial Intelligence-Based Materials Market – By Type of Materials
6.1 Introduction/Key Findings
6.2 Polymers
6.3 Metals
6.4 Ceramics
6.5 Composites
6.6 Biomaterials
6.7 Others
6.8 Y-O-Y Growth trend Analysis By Type of Materials
6.9 Absolute $ Opportunity Analysis By Type of Materials, 2024-2030
Chapter 7. Artificial Intelligence-Based Materials Market – By Application
7.1 Introduction/Key Findings
7.2 Material Design
7.3 Process Optimization
7.4 Quality Control & Assurance
7.5 Predictive Maintenance
7.6 Others
7.7 Y-O-Y Growth trend Analysis By Application
7.8 Absolute $ Opportunity Analysis By Application, 2024-2030
Chapter 8. Artificial Intelligence-Based Materials Market – By End-User
8.1 Introduction/Key Findings
8.2 Automotive
8.3 Aerospace
8.4 Electronics
8.5 Healthcare
8.6 Construction
8.7 Energy
8.8 Consumer Goods
8.9 Y-O-Y Growth trend Analysis By End-User
8.10 Absolute $ Opportunity Analysis By End-User, 2024-2030
Chapter 9. Artificial Intelligence-Based Materials Market , By Geography – Market Size, Forecast, Trends & Insights
9.1 North America
9.1.1 By Country
9.1.1.1 U.S.A.
9.1.1.2 Canada
9.1.1.3 Mexico
9.1.2 By Type of Materials
9.1.3 By Application
9.1.4 By End-User
9.1.5 Countries & Segments - Market Attractiveness Analysis
9.2 Europe
9.2.1 By Country
9.2.1.1 U.K
9.2.1.2 Germany
9.2.1.3 France
9.2.1.4 Italy
9.2.1.5 Spain
9.2.1.6 Rest of Europe
9.2.2 By Type of Materials
9.2.3 By Application
9.2.4 By End-User
9.2.5 Countries & Segments - Market Attractiveness Analysis
9.3 Asia Pacific
9.3.1 By Country
9.3.1.1 China
9.3.1.2 Japan
9.3.1.3 South Korea
9.3.1.4 India
9.3.1.5 Australia & New Zealand
9.3.1.6 Rest of Asia-Pacific
9.3.2 By Type of Materials
9.3.3 By Application
9.3.4 By End-User
9.3.5 Countries & Segments - Market Attractiveness Analysis
9.4 South America
9.4.1 By Country
9.4.1.1 Brazil
9.4.1.2 Argentina
9.4.1.3 Colombia
9.4.1.4 Chile
9.4.1.5 Rest of South America
9.4.2 By Type of Materials
9.4.3 By Application
9.4.4 By End-User
9.4.5 Countries & Segments - Market Attractiveness Analysis
9.5 Middle East & Africa
9.5.1 By Country
9.5.1.1 United Arab Emirates (UAE)
9.5.1.2 Saudi Arabia
9.5.1.3 Qatar
9.5.1.4 Israel
9.5.1.5 South Africa
9.5.1.6 Nigeria
9.5.1.7 Kenya
9.5.1.8 Egypt
9.5.1.9 Rest of MEA
9.5.2 By Type of Materials
9.5.3 By Application
9.5.4 By End-User
9.5.5 Countries & Segments - Market Attractiveness Analysis
Chapter 10. Artificial Intelligence-Based Materials Market – Company Profiles – (Overview, Product Portfolio, Financials, Strategies & Developments)
10.1 IBM Corporation
10.2 BASF SE
10.3 Siemens AG
10.4 General Electric Company
10.5 Google
10.6 Microsoft Corporation
10.7 NVIDIA Corporation
10.8 Arkema SA
10.9 SABIC
10.10 Intel Corporation
10.11 Materialise NV
10.12 Carbon, Inc.
2500
4250
5250
6900
Frequently Asked Questions
The market for global artificial intelligence-based materials was estimated to be worth 6 USD billion in 2023 and is expected to increase to 19.11 USD billion by 2030, with a projected compound annual growth rate (CAGR) of 18% from 2024 to 2030.
The essential drivers of the global artificial intelligence-based materials market are advancements in AI calculations, improved fabricating effectiveness and quality control, and the integration of AI in material science.
The key challenges confronting the global artificial intelligence-based materials market are security concerns, a lack of skilled labor, and associated costs.
In 2023, North America held the largest share of the global artificial intelligence-based materials market.
IBM Corporation, BASF SE, Siemens AG, General Electric Company, Google, Microsoft Corporation, NVIDIA Corporation, Arkema SA, SABIC, Intel Corporation, Materialise NV, and Carbon, Inc. are the main players.
Analyst Support
Every order comes with Analyst Support.
Customization
We offer customization to cater your needs to fullest.
Verified Analysis
We value integrity, quality and authenticity the most.