IT-thumbnail.png

Global AIOps Platforms Market Research Report – Segmentation by Type (Domain-Centric AIOps, Domain-Agnostic AIOps); By Distribution Channel (Direct Sales, Cloud Marketplaces, Value-Added Resellers (VARs), Managed Service Providers (MSPs)); By Deployment (On-Premise, Public Cloud, Hybrid Cloud); By Application (Real-Time Analytics, Infrastructure Management, Application Performance Management (APM), Network Security, Log Management); Region – Forecast (2026 – 2030)

GLOBAL AIOPS PLATFORMS MARKET (2026 - 2030)

The AIOps Platforms Market was valued at USD 16 billion in 2025 and is projected to reach a market size of USD 42 billion by the end of 2030. Over the forecast period of 2026-2030, the market is projected to grow at a CAGR of 21.3%.

The AIOps (Artificial Intelligence for IT Operations) Platforms Market sits at the critical intersection of advanced machine learning and the increasingly chaotic world of enterprise IT infrastructure. In 2025, AIOps transitioned from a "nice-to-have" experimental technology to a fundamental operational necessity for Global 2000 organizations. As digital ecosystems fracture complex webs of microservices, serverless functions, and hybrid cloud environments, human operators can no longer physically manage the deluge of telemetry data logs, metrics, and traces generated every second. AIOps platforms serve as the central nervous system for modern IT, ingesting this "digital noise" to identify meaningful patterns, predict outages before they occur, and increasingly resolve incidents autonomously without human intervention.

 

Key Market Insights:

  • McKinsey highlights AIOps technologies and analytics, organizations can predict issues, reduce false positives, and automate incident workflows to accelerate response and recovery times. McKinsey on adopting AIOps for predictive insights and automated operations response.
  • The adoption rate of AIOps strategies among Fortune 500 companies hit 64% in 2025, a significant leap driven by the need to manage multi-cloud complexity.
  • By mid-2025, 44% of all deployed AIOps solutions featured integrated Generative AI "Copilots" capable of drafting incident post-mortems and suggesting remediation scripts.
  • The average enterprise AIOps deployment in 2025 ingests and processes approximately 500 Terabytes of telemetry data monthly, underscoring the massive scale of modern digital footprints.
  • IT Operations departments allocated 15% of their total 2025 software budget specifically to AIOps and Observability tools, marking it as a top-three spending priority alongside Cybersecurity and Cloud Services.
  • Companies fully utilizing AIOps automated remediation features achieved a 40% improvement in Mean Time to Resolution (MTTR) for critical severity incidents compared to those relying on manual triage.
  • The Public Cloud deployment model accounted for 61% of new AIOps implementations in 2025, reflecting the market's shift away from heavy on-premise appliances.
  • The North American market alone generated USD 7.3 billion in revenue in 2025, driven by the aggressive adoption of "Self-Healing" IT architectures in Silicon Valley and Wall Street.

Market Drivers:

A primary driver propelling the AIOps market is the unmanageable volume of operational data generated by modern hybrid environments.

In 2025, a typical enterprise application spans across AWS, Azure, on-premise data centers, and edge locations, generating petabytes of logs and metrics. Traditional monitoring tools create siloed views, leading to a "swivel-chair" interface for IT teams who cannot correlate a database spike in Ohio with a code deploy in London. AIOps platforms drive growth by acting as a unified data lake that ingests disparate formats, normalizes the data, and provides a holistic, single-pane-of-glass view. This capability is no longer optional; it is the only way to maintain visibility in a containerized, ephemeral IT world.

The second major driver is the crushing pressure to reduce Mean Time to Resolution (MTTR) and operational costs.

Downtime in 2025 is existentially expensive, with digital service outages costing enterprises an average of $300,000 per hour. Human teams, regardless of size, cannot react fast enough to "flash crashes" caused by complex software bugs. AIOps drives the market by offering "Autonomous Remediation", the ability to detect an issue (e.g., a memory leak) and trigger a pre-approved script to restart the service or rollback a deployment instantly. This shift from "monitoring" to "acting" allows businesses to scale their infrastructure without linearly scaling their headcount, presenting a massive ROI that justifies high platform costs.

Market Restraints and Challenges:

The market faces significant friction due to Data Quality and "Garbage In, Garbage Out" issues. An AIOps model is only as good as the data it is fed; if an enterprise has poorly structured logs, missing timestamps, or incomplete topology data, the AI will generate inaccurate correlations and hallucinated root causes. Additionally, the Cultural Resistance and Skills Gap remains a formidable barrier. IT teams often view AIOps as a "black box" that threatens their jobs or provides untrustworthy advice. The scarcity of Site Reliability Engineers (SREs) capable of configuring and training these complex models slows down successful deployment, leading to a high rate of "shelfware" where expensive tools are underutilized.

Market Opportunities:

A massive opportunity lies in the Convergence of AIOps and Edge Computing. As 5G networks and IoT devices proliferate, processing operational data at the "Edge" (e.g., on a factory floor or in a connected vehicle) becomes critical. AIOps platforms that can run lightweight inference models on edge devices to predict failures locally, without sending terabytes of data back to the cloud, will capture a burgeoning industrial market. Furthermore, Business-Centric AIOps represents a new frontier. Moving beyond just "IT health," the next wave of opportunities involves correlating technical metrics (server latency) directly with business KPIs (cart abandonment rate), allowing IT teams to prioritize fixes based on revenue impact rather than just technical severity.

GLOBAL AIOPS PLATFORMS MARKET 

REPORT METRIC

DETAILS

Market Size Available

2024 - 2030

Base Year

2024

Forecast Period

2025 - 2030

CAGR

21.3%

Segments Covered

By Product, Type, Consumption, Distribution Channel and Region

Various Analyses Covered

Global, Regional & Country Level Analysis, Segment-Level Analysis, DROC, PESTLE Analysis, Porter’s Five Forces Analysis, Competitive Landscape, Analyst Overview on Investment Opportunities

Regional Scope

North America, Europe, APAC, Latin America, Middle East & Africa

Key Companies Profiled

Splunk Inc. (Cisco), Dynatrace, Datadog

New Relic, ScienceLogic, ServiceNow

Broadcom(VMware/Symantec),IBM Corporation, BigPanda, Moogsoft (Dell)

Market Segmentation:

Segmentation by Type:

  • Domain-Centric AIOps
  • Domain-Agnostic AIOps

Domain-Agnostic AIOps is the fastest-growing type. These platforms stand apart from specific data sources, capable of ingesting data from any vendor (network, server, application, or database). As enterprises seek to break down vendor lock-in and unify their fragmented toolchains, they are aggressively adopting agnostic platforms that can sit above the entire stack and correlate everything.

Domain-Centric AIOps remains the most dominant type. These are AIOps features embedded within specific toolsets (like an APM tool that offers AI features for application data only). Because they are easier to deploy and often come "bundled" with existing monitoring contracts, they currently hold the largest installed base, serving specific teams like Network Operations or DevOps.

Segmentation by Distribution Channel:

  • Direct Sales
  • Cloud Marketplaces (AWS, Azure, GCP Marketplaces)
  • Value-Added Resellers (VARs)
  • Managed Service Providers (MSPs)

Cloud Marketplaces are the fastest-growing distribution channel. The friction-less procurement model, where engineering leads can spin up an AIOps instance using their existing cloud commit credits (EDP), is revolutionizing sales. It bypasses lengthy procurement cycles and allows for rapid "Proof of Value" trials.

Direct Sales remains the most dominant channel. Given the high cost and strategic complexity of an enterprise-wide AIOps rollout, large organizations prefer high-touch engagements with the vendor's sales engineering teams to ensure custom integration and security compliance, keeping direct sales as the primary revenue generator.

Segmentation by Deployment:

  • On-Premise
  • Public Cloud
  • Hybrid Cloud

On-Premise remains a significant, though shrinking, dominant segment in highly regulated industries. Sectors like Defense and Banking often require data to remain within their physical firewalls due to sovereignty laws, sustaining a strong, high-value market for "air-gapped" AIOps appliances.

Public Cloud is the fastest-growing and effectively the standard deployment model for new implementations. The massive compute power required to train ML models and store petabytes of historical data makes the cloud the natural habitat for AIOps. SaaS delivery models allow for instant updates and leveraging the vendor's collective intelligence across all customers.

Segmentation by Application:

  • Real-Time Analytics
  • Infrastructure Management
  • Application Performance Management (APM)
  • Network Security
  • Log Management

Real-Time Analytics is the fastest-growing application. The demand is shifting from "what happened yesterday?" to "what is happening right now?". Streaming analytics that can process millions of events per second to detect fraud or service degradation in real-time are seeing explosive demand.

Infrastructure Management is the most dominant application. The foundational use case of AIOps remains keeping the lights on. Monitoring the health of servers, storage, and virtual machines constitutes the bulk of daily alerts and incidents, making it the bedrock application for the majority of the market's revenue.

Market Segmentation: Regional Analysis:

  • North America
  • Europe
  • Asia-Pacific
  • Middle East & Africa
  • Latin America

North America dominates the market with an estimated 42% share in 2025. This leadership is anchored by the presence of key AIOps innovators (Splunk, Datadog, Dynatrace) and a mature, cloud-first corporate culture that is quick to adopt automation technologies to offset high labor costs.

Asia-Pacific is the fastest-growing region. Rapid digital transformation in India, Southeast Asia, and China, combined with the massive scale of their telecom and banking sectors, is driving a surge in demand. The region's leapfrog adoption of mobile-first services creates complex environments that necessitate AIOps for reliability.

COVID-19 Impact Analysis:

The COVID-19 pandemic acted as a massive accelerant for the AIOps market, compressing five years of digital transformation into one. As workforces went remote and commerce went online, the reliability of digital services became the sole lifeline for revenue. This "digital-only" reality exposed the fragility of manual IT operations; human teams simply could not cope with the usage spikes and distributed complexity. Consequently, AIOps moved from an "innovation project" to a "business continuity essential." The pandemic permanently elevated the status of IT Operations, ensuring that budgets for automation and observability remained resilient even during subsequent economic downturns.

Latest Market News :

  • March 2024: Cisco officially completed its monumental $28 billion acquisition of Splunk. This merger creates one of the world's largest AIOps and observability powerhouses, promising to integrate Cisco's network intelligence with Splunk's data analytics for unprecedented full-stack visibility.
  • August 2024: Hewlett Packard Enterprise (HPE) launched its "OpsRamp GenAI Assistant," a new feature set within its GreenLake platform that utilizes generative AI to interpret network alerts and automatically suggest configuration changes to resolve bottlenecks.
  • April 2024: BMC Software announced the acquisition of Netreo, a provider of smart network observability. This strategic move aims to bolster BMC's Helix platform, deepening its capabilities in network performance monitoring and correlation.
  • November 2024: Siemens announced a strategic pivot to integrate industrial-grade AIOps into its operational technology (OT) portfolio, signaling the expansion of AIOps from pure IT data centers into manufacturing floors and industrial grids.
  • October 2024: Dynatrace unveiled its "Grail" data lakehouse updates, introducing new causal AI capabilities that combine predictive and generative AI to offer precise root-cause analysis for Kubernetes environments.

Latest Trends and Developments:

The defining trend of 2025 is "Generative Observability." The integration of LLMs allows operators to "chat" with their infrastructure (e.g., asking "Why is the checkout page slow?") and receive data-backed answers. Another significant development is the rise of "Green AIOps," where platforms are now optimizing infrastructure not just for performance, but for carbon efficiency, automatically powering down unused servers or shifting workloads to data centers with renewable energy sources. Finally, "AIOps for Security" (SecOps) is blurring the lines, with AIOps platforms increasingly being used to detect security anomalies like DDoS attacks or data exfiltration alongside performance issues.

Key Players in the Market:

  • Splunk Inc. (Cisco)
  • Dynatrace
  • Datadog
  • New Relic
  • ScienceLogic
  • ServiceNow
  • Broadcom (VMware/Symantec)
  • IBM Corporation
  • BigPanda

Moogsoft (Dell)

Chapter 1. GLOBAL AIOPS PLATFORMS MARKET – SCOPE & METHODOLOGY
   1.1. Market Segmentation
   1.2. Scope, Assumptions & Limitations
   1.3. Research Methodology
   1.4. Primary End-user Application .
   1.5. Secondary End-user Application 
 Chapter 2.
GLOBAL AIOPS PLATFORMS MARKET – EXECUTIVE SUMMARY
  2.1. Market Size & Forecast – (2025 – 2030) ($M/$Bn)
  2.2. Key Trends & Insights
              2.2.1. Demand Side
              2.2.2. Supply Side     
   2.3. Attractive Investment Propositions
   2.4. COVID-19 Impact Analysis
 Chapter 3.
GLOBAL AIOPS PLATFORMS MARKET – COMPETITION SCENARIO
   3.1. Market Share Analysis & Company Benchmarking
   3.2. Competitive Strategy & Development Scenario
   3.3. Competitive Pricing Analysis
   3.4. Supplier-Distributor Analysis
 Chapter 4.
GLOBAL AIOPS PLATFORMS MARKET  - ENTRY SCENARIO
4.1. Regulatory Scenario
4.2. Case Studies – Key Start-ups
4.3. Customer Analysis
4.4. PESTLE Analysis
4.5. Porters Five Force Model
               4.5.1. Bargaining Frontline Workers Training of Suppliers
               4.5.2. Bargaining Risk Analytics s of Customers
               4.5.3. Threat of New Entrants
               4.5.4. Rivalry among Existing Players
               4.5.5. Threat of Substitutes Players
                4.5.6. Threat of Substitutes 
 Chapter 5.
GLOBAL AIOPS PLATFORMS MARKET  - LANDSCAPE
   5.1. Value Chain Analysis – Key Stakeholders Impact Analysis
   5.2. Market Drivers
   5.3. Market Restraints/Challenges
   5.4. Market Opportunities
Chapter 6.
GLOBAL AIOPS PLATFORMS MARKET – By Type

Domain-Centric AIOps

Domain-Agnostic AIOps

Chapter7.GLOBALAIOPSPLATFORMSMARKET-Distributionchannel
Direct Sales

Cloud Marketplaces (AWS, Azure, GCP Marketplaces)

Value-Added Resellers (VARs)

Managed Service Providers (MSPs)

Chapter 8. GLOBAL AIOPS PLATFORMS MARKET  – By Deployment Mode

On-Premise

Public Cloud

Hybrid Cloud

Chapter 9. GLOBAL AIOPS PLATFORMS MARKET – By Application

  • Real-Time Analytics
  • Infrastructure Management
  • Application Performance Management (APM)
  • Network Security
  • Log Management

Chapter 10. GLOBAL AIOPS PLATFORMS MARKET – By Geography – Market Size, Forecast, Trends & Insights
10.1. North America
    10.1.1. By Country
        10.1.1.1. U.S.A.
        10.1.1.2. Canada
        10.1.1.3. Mexico
    10.1.2. By Type
    10.1.3. By Application
    10.1.4. By Form
    10.1.5. By Infrastructure Scale
    10.1.6. Countries & Segments - Market Attractiveness Analysis
10.2. Europe
    10.2.1. By Country
        10.2.1.1. U.K.
        10.2.1.2. Germany
        10.2.1.3. France
        10.2.1.4. Italy
        10.2.1.5. Spain
        10.2.1.6. Rest of Europe
    10.2.2. By Type
    10.2.3. By Application
    10.2.4. By Form
    10.2.5. By Infrastructure Scale
    10.2.6. Countries & Segments - Market Attractiveness Analysis
10.3. Asia Pacific
    10.3.1. By Country
        10.3.1.1. China
        10.3.1.2. Japan
        10.3.1.3. South Korea
        10.3.1.4. India
        10.3.1.5. Australia & New Zealand
        10.3.1.6. Rest of Asia-Pacific
    10.3.2. By Type
    10.3.3. By Application
    10.3.4. By Form
    10.3.5. By Infrastructure Scale
    10.3.6. Countries & Segments - Market Attractiveness Analysis
10.4. South America
    10.4.1. By Country
        10.4.1.1. Brazil
        10.4.1.2. Argentina
        10.4.1.3. Colombia
        10.4.1.4. Chile
        10.4.1.5. Rest of South America
    10.4.2. By Type
    10.4.3. By Application
    10.4.4. By Form
    10.4.5. By Infrastructure Scale
    10.4.6. Countries & Segments - Market Attractiveness Analysis
10.5. Middle East & Africa
    10.5.1. By Country
        10.5.1.1. United Arab Emirates (UAE)
        10.5.1.2. Saudi Arabia
        10.5.1.3. Qatar
        10.5.1.4. Israel
        10.5.1.5. South Africa
        10.5.1.6. Nigeria
        10.5.1.7. Kenya
        10.5.1.8. Egypt
        10.5.1.9. Rest of MEA
    10.5.2. By Type
    10.5.3. By Application
    10.5.4. By Form
    10.5.5. By Infrastructure Scale
    10.5.6. Countries & Segments - Market Attractiveness Analysis
Chapter 11.
GLOBAL AIOPS PLATFORMS MARKET – Company Profiles – (Overview, Type of Training  Portfolio, Financials, Strategies & Developments)

  • Splunk Inc. (Cisco)
  • Dynatrace
  • Datadog
  • New Relic
  • ScienceLogic
  • ServiceNow
  • Broadcom (VMware/Symantec)
  • IBM Corporation
  • BigPanda
  • Moogsoft (Dell)

Download Sample

The field with (*) is required.

Choose License Type

$

2500

$

4250

$

5250

$

6900

Frequently Asked Questions

The primary drivers are the exponential increase in data volume generated by hybrid cloud and microservices environments, which exceeds human capacity to manage. Additionally, the urgent business need to reduce Mean Time to Resolution (MTTR) and the widespread adoption of automation to optimize IT costs are fueling rapid market expansion.

The main concerns revolve around the "black box" nature of AI, where teams struggle to trust automated decisions. Data quality issues are also critical; poor data leads to poor AI predictions. Furthermore, the high cost of implementation and the shortage of skilled professionals to manage these sophisticated tools remain significant hurdles.

The market is led by major technology vendors and specialized observability firms. Key players include Splunk (Cisco), Dynatrace, Datadog, ServiceNow, IBM, BigPanda, and ScienceLogic, all of whom compete to offer the most unified and intelligent operations platforms.

North America currently holds the largest market share, estimated at approximately 42% in 2025. This dominance is due to the concentration of major tech enterprises, early adoption of cloud-native technologies, and significant investment in AI research and development within the region.

The Asia-Pacific region is expanding at the highest rate. This growth is driven by massive digital transformation initiatives in emerging economies, the rapid rollout of 5G networks requiring automated management, and increasing IT spending in countries like India, China, and Japan.

Analyst Support

Every order comes with Analyst Support.

Customization

We offer customization to cater your needs to fullest.

Verified Analysis

We value integrity, quality and authenticity the most.