GLOBAL AIOPS PLATFORMS MARKET (2026 - 2030)
The AIOps Platforms Market was valued at USD 16 billion in 2025 and is projected to reach a market size of USD 42 billion by the end of 2030. Over the forecast period of 2026-2030, the market is projected to grow at a CAGR of 21.3%.
The AIOps (Artificial Intelligence for IT Operations) Platforms Market sits at the critical intersection of advanced machine learning and the increasingly chaotic world of enterprise IT infrastructure. In 2025, AIOps transitioned from a "nice-to-have" experimental technology to a fundamental operational necessity for Global 2000 organizations. As digital ecosystems fracture complex webs of microservices, serverless functions, and hybrid cloud environments, human operators can no longer physically manage the deluge of telemetry data logs, metrics, and traces generated every second. AIOps platforms serve as the central nervous system for modern IT, ingesting this "digital noise" to identify meaningful patterns, predict outages before they occur, and increasingly resolve incidents autonomously without human intervention.
Market Drivers:
A primary driver propelling the AIOps market is the unmanageable volume of operational data generated by modern hybrid environments.
In 2025, a typical enterprise application spans across AWS, Azure, on-premise data centers, and edge locations, generating petabytes of logs and metrics. Traditional monitoring tools create siloed views, leading to a "swivel-chair" interface for IT teams who cannot correlate a database spike in Ohio with a code deploy in London. AIOps platforms drive growth by acting as a unified data lake that ingests disparate formats, normalizes the data, and provides a holistic, single-pane-of-glass view. This capability is no longer optional; it is the only way to maintain visibility in a containerized, ephemeral IT world.
The second major driver is the crushing pressure to reduce Mean Time to Resolution (MTTR) and operational costs.
Downtime in 2025 is existentially expensive, with digital service outages costing enterprises an average of $300,000 per hour. Human teams, regardless of size, cannot react fast enough to "flash crashes" caused by complex software bugs. AIOps drives the market by offering "Autonomous Remediation", the ability to detect an issue (e.g., a memory leak) and trigger a pre-approved script to restart the service or rollback a deployment instantly. This shift from "monitoring" to "acting" allows businesses to scale their infrastructure without linearly scaling their headcount, presenting a massive ROI that justifies high platform costs.
The market faces significant friction due to Data Quality and "Garbage In, Garbage Out" issues. An AIOps model is only as good as the data it is fed; if an enterprise has poorly structured logs, missing timestamps, or incomplete topology data, the AI will generate inaccurate correlations and hallucinated root causes. Additionally, the Cultural Resistance and Skills Gap remains a formidable barrier. IT teams often view AIOps as a "black box" that threatens their jobs or provides untrustworthy advice. The scarcity of Site Reliability Engineers (SREs) capable of configuring and training these complex models slows down successful deployment, leading to a high rate of "shelfware" where expensive tools are underutilized.
A massive opportunity lies in the Convergence of AIOps and Edge Computing. As 5G networks and IoT devices proliferate, processing operational data at the "Edge" (e.g., on a factory floor or in a connected vehicle) becomes critical. AIOps platforms that can run lightweight inference models on edge devices to predict failures locally, without sending terabytes of data back to the cloud, will capture a burgeoning industrial market. Furthermore, Business-Centric AIOps represents a new frontier. Moving beyond just "IT health," the next wave of opportunities involves correlating technical metrics (server latency) directly with business KPIs (cart abandonment rate), allowing IT teams to prioritize fixes based on revenue impact rather than just technical severity.
GLOBAL AIOPS PLATFORMS MARKET
|
REPORT METRIC |
DETAILS |
|
Market Size Available |
2024 - 2030 |
|
Base Year |
2024 |
|
Forecast Period |
2025 - 2030 |
|
CAGR |
21.3% |
|
Segments Covered |
By Product, Type, Consumption, Distribution Channel and Region |
|
Various Analyses Covered |
Global, Regional & Country Level Analysis, Segment-Level Analysis, DROC, PESTLE Analysis, Porter’s Five Forces Analysis, Competitive Landscape, Analyst Overview on Investment Opportunities |
|
Regional Scope |
North America, Europe, APAC, Latin America, Middle East & Africa |
|
Key Companies Profiled |
Splunk Inc. (Cisco), Dynatrace, Datadog New Relic, ScienceLogic, ServiceNow Broadcom(VMware/Symantec),IBM Corporation, BigPanda, Moogsoft (Dell) |
Segmentation by Type:
Domain-Agnostic AIOps is the fastest-growing type. These platforms stand apart from specific data sources, capable of ingesting data from any vendor (network, server, application, or database). As enterprises seek to break down vendor lock-in and unify their fragmented toolchains, they are aggressively adopting agnostic platforms that can sit above the entire stack and correlate everything.
Domain-Centric AIOps remains the most dominant type. These are AIOps features embedded within specific toolsets (like an APM tool that offers AI features for application data only). Because they are easier to deploy and often come "bundled" with existing monitoring contracts, they currently hold the largest installed base, serving specific teams like Network Operations or DevOps.
Segmentation by Distribution Channel:
Cloud Marketplaces are the fastest-growing distribution channel. The friction-less procurement model, where engineering leads can spin up an AIOps instance using their existing cloud commit credits (EDP), is revolutionizing sales. It bypasses lengthy procurement cycles and allows for rapid "Proof of Value" trials.
Direct Sales remains the most dominant channel. Given the high cost and strategic complexity of an enterprise-wide AIOps rollout, large organizations prefer high-touch engagements with the vendor's sales engineering teams to ensure custom integration and security compliance, keeping direct sales as the primary revenue generator.
Segmentation by Deployment:
On-Premise remains a significant, though shrinking, dominant segment in highly regulated industries. Sectors like Defense and Banking often require data to remain within their physical firewalls due to sovereignty laws, sustaining a strong, high-value market for "air-gapped" AIOps appliances.
Public Cloud is the fastest-growing and effectively the standard deployment model for new implementations. The massive compute power required to train ML models and store petabytes of historical data makes the cloud the natural habitat for AIOps. SaaS delivery models allow for instant updates and leveraging the vendor's collective intelligence across all customers.
Segmentation by Application:
Real-Time Analytics is the fastest-growing application. The demand is shifting from "what happened yesterday?" to "what is happening right now?". Streaming analytics that can process millions of events per second to detect fraud or service degradation in real-time are seeing explosive demand.
Infrastructure Management is the most dominant application. The foundational use case of AIOps remains keeping the lights on. Monitoring the health of servers, storage, and virtual machines constitutes the bulk of daily alerts and incidents, making it the bedrock application for the majority of the market's revenue.
North America dominates the market with an estimated 42% share in 2025. This leadership is anchored by the presence of key AIOps innovators (Splunk, Datadog, Dynatrace) and a mature, cloud-first corporate culture that is quick to adopt automation technologies to offset high labor costs.
Asia-Pacific is the fastest-growing region. Rapid digital transformation in India, Southeast Asia, and China, combined with the massive scale of their telecom and banking sectors, is driving a surge in demand. The region's leapfrog adoption of mobile-first services creates complex environments that necessitate AIOps for reliability.
The COVID-19 pandemic acted as a massive accelerant for the AIOps market, compressing five years of digital transformation into one. As workforces went remote and commerce went online, the reliability of digital services became the sole lifeline for revenue. This "digital-only" reality exposed the fragility of manual IT operations; human teams simply could not cope with the usage spikes and distributed complexity. Consequently, AIOps moved from an "innovation project" to a "business continuity essential." The pandemic permanently elevated the status of IT Operations, ensuring that budgets for automation and observability remained resilient even during subsequent economic downturns.
The defining trend of 2025 is "Generative Observability." The integration of LLMs allows operators to "chat" with their infrastructure (e.g., asking "Why is the checkout page slow?") and receive data-backed answers. Another significant development is the rise of "Green AIOps," where platforms are now optimizing infrastructure not just for performance, but for carbon efficiency, automatically powering down unused servers or shifting workloads to data centers with renewable energy sources. Finally, "AIOps for Security" (SecOps) is blurring the lines, with AIOps platforms increasingly being used to detect security anomalies like DDoS attacks or data exfiltration alongside performance issues.
Moogsoft (Dell)
Chapter 1. GLOBAL AIOPS PLATFORMS MARKET – SCOPE & METHODOLOGY
1.1. Market Segmentation
1.2. Scope, Assumptions & Limitations
1.3. Research Methodology
1.4. Primary End-user Application .
1.5. Secondary End-user Application
Chapter 2. GLOBAL AIOPS PLATFORMS MARKET – EXECUTIVE SUMMARY
2.1. Market Size & Forecast – (2025 – 2030) ($M/$Bn)
2.2. Key Trends & Insights
2.2.1. Demand Side
2.2.2. Supply Side
2.3. Attractive Investment Propositions
2.4. COVID-19 Impact Analysis
Chapter 3. GLOBAL AIOPS PLATFORMS MARKET – COMPETITION SCENARIO
3.1. Market Share Analysis & Company Benchmarking
3.2. Competitive Strategy & Development Scenario
3.3. Competitive Pricing Analysis
3.4. Supplier-Distributor Analysis
Chapter 4. GLOBAL AIOPS PLATFORMS MARKET - ENTRY SCENARIO
4.1. Regulatory Scenario
4.2. Case Studies – Key Start-ups
4.3. Customer Analysis
4.4. PESTLE Analysis
4.5. Porters Five Force Model
4.5.1. Bargaining Frontline Workers Training of Suppliers
4.5.2. Bargaining Risk Analytics s of Customers
4.5.3. Threat of New Entrants
4.5.4. Rivalry among Existing Players
4.5.5. Threat of Substitutes Players
4.5.6. Threat of Substitutes
Chapter 5. GLOBAL AIOPS PLATFORMS MARKET - LANDSCAPE
5.1. Value Chain Analysis – Key Stakeholders Impact Analysis
5.2. Market Drivers
5.3. Market Restraints/Challenges
5.4. Market Opportunities
Chapter 6. GLOBAL AIOPS PLATFORMS MARKET – By Type
Domain-Centric AIOps
Domain-Agnostic AIOps
Chapter7.GLOBALAIOPSPLATFORMSMARKET-Distributionchannel
Direct Sales
Cloud Marketplaces (AWS, Azure, GCP Marketplaces)
Value-Added Resellers (VARs)
Managed Service Providers (MSPs)
Chapter 8. GLOBAL AIOPS PLATFORMS MARKET – By Deployment Mode
On-Premise
Public Cloud
Hybrid Cloud
Chapter 9. GLOBAL AIOPS PLATFORMS MARKET – By Application
Chapter 10. GLOBAL AIOPS PLATFORMS MARKET – By Geography – Market Size, Forecast, Trends & Insights
10.1. North America
10.1.1. By Country
10.1.1.1. U.S.A.
10.1.1.2. Canada
10.1.1.3. Mexico
10.1.2. By Type
10.1.3. By Application
10.1.4. By Form
10.1.5. By Infrastructure Scale
10.1.6. Countries & Segments - Market Attractiveness Analysis
10.2. Europe
10.2.1. By Country
10.2.1.1. U.K.
10.2.1.2. Germany
10.2.1.3. France
10.2.1.4. Italy
10.2.1.5. Spain
10.2.1.6. Rest of Europe
10.2.2. By Type
10.2.3. By Application
10.2.4. By Form
10.2.5. By Infrastructure Scale
10.2.6. Countries & Segments - Market Attractiveness Analysis
10.3. Asia Pacific
10.3.1. By Country
10.3.1.1. China
10.3.1.2. Japan
10.3.1.3. South Korea
10.3.1.4. India
10.3.1.5. Australia & New Zealand
10.3.1.6. Rest of Asia-Pacific
10.3.2. By Type
10.3.3. By Application
10.3.4. By Form
10.3.5. By Infrastructure Scale
10.3.6. Countries & Segments - Market Attractiveness Analysis
10.4. South America
10.4.1. By Country
10.4.1.1. Brazil
10.4.1.2. Argentina
10.4.1.3. Colombia
10.4.1.4. Chile
10.4.1.5. Rest of South America
10.4.2. By Type
10.4.3. By Application
10.4.4. By Form
10.4.5. By Infrastructure Scale
10.4.6. Countries & Segments - Market Attractiveness Analysis
10.5. Middle East & Africa
10.5.1. By Country
10.5.1.1. United Arab Emirates (UAE)
10.5.1.2. Saudi Arabia
10.5.1.3. Qatar
10.5.1.4. Israel
10.5.1.5. South Africa
10.5.1.6. Nigeria
10.5.1.7. Kenya
10.5.1.8. Egypt
10.5.1.9. Rest of MEA
10.5.2. By Type
10.5.3. By Application
10.5.4. By Form
10.5.5. By Infrastructure Scale
10.5.6. Countries & Segments - Market Attractiveness Analysis
Chapter 11. GLOBAL AIOPS PLATFORMS MARKET – Company Profiles – (Overview, Type of Training Portfolio, Financials, Strategies & Developments)
2500
4250
5250
6900
Frequently Asked Questions
The primary drivers are the exponential increase in data volume generated by hybrid cloud and microservices environments, which exceeds human capacity to manage. Additionally, the urgent business need to reduce Mean Time to Resolution (MTTR) and the widespread adoption of automation to optimize IT costs are fueling rapid market expansion.
The main concerns revolve around the "black box" nature of AI, where teams struggle to trust automated decisions. Data quality issues are also critical; poor data leads to poor AI predictions. Furthermore, the high cost of implementation and the shortage of skilled professionals to manage these sophisticated tools remain significant hurdles.
The market is led by major technology vendors and specialized observability firms. Key players include Splunk (Cisco), Dynatrace, Datadog, ServiceNow, IBM, BigPanda, and ScienceLogic, all of whom compete to offer the most unified and intelligent operations platforms.
North America currently holds the largest market share, estimated at approximately 42% in 2025. This dominance is due to the concentration of major tech enterprises, early adoption of cloud-native technologies, and significant investment in AI research and development within the region.
The Asia-Pacific region is expanding at the highest rate. This growth is driven by massive digital transformation initiatives in emerging economies, the rapid rollout of 5G networks requiring automated management, and increasing IT spending in countries like India, China, and Japan.
Analyst Support
Every order comes with Analyst Support.
Customization
We offer customization to cater your needs to fullest.
Verified Analysis
We value integrity, quality and authenticity the most.