GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET (2026 - 2030)
The Enterprise Knowledge Management for Artificial Intelligence Market was valued at USD 4.2 billion in 2025 and is projected to reach a market size of USD 10.45 billion by the end of 2030. Over the forecast period of 2026-2030, the market is projected to grow at a CAGR of 20%.
The Enterprise Knowledge Management (EKM) for Artificial Intelligence market represents the convergence of traditional information governance with the transformative power of Generative Artificial Intelligence and Large Language Models (LLMs). Unlike legacy knowledge bases that relied on manual tagging and keyword matching, this new market is defined by "active intelligence" systems that autonomously ingest, structure, and retrieve unstructured enterprise data to power AI agents and decision-making. In 2025, the market has shifted from experimental pilots to core infrastructure. The ecosystem is vibrant but fragmented, featuring a mix of cloud hyperscalers offering integrated knowledge suites and specialized startups focusing on neural search and entity extraction. The strategic imperative has moved beyond efficiency it is now about risk mitigation. As AI becomes deeply embedded in workflows, the quality of the underlying knowledge base directly dictates the safety and accuracy of automated business operations.
The primary engine propelling the market in 2025 is the universal adoption of Retrieval-Augmented Generation (RAG) architectures.
As enterprises deploy Generative AI, they have realized that off-the-shelf models are insufficient without access to proprietary, real-time company data. "Hallucinations" where AI invents facts are a critical liability. To solve this, companies are rushing to build robust Knowledge Management pipelines that can feed accurate, cited, and up-to-date context to their AI models. This has transformed Knowledge Management from a "nice-to-have" archival function into a mission-critical layer of the AI tech stack, necessary for any reliable automated workflow.
A secondary but equally powerful driver is the rise of "Agentic AI" autonomous software agents capable of performing multi-step tasks.
For an AI agent to successfully "onboard a new employee" or "resolve a complex customer claim," it needs unfettered access to fragmented information scattered across emails, CRMs, cloud drives, and chat logs. Traditional siloed databases prevent this. Consequently, there is a massive market push to deploy "Neural Search" and "Knowledge Graph" technologies that connect these disparate data islands. This unification allows AI agents to "reason" across the entire enterprise memory, driving demand for platforms that can ingest and link diverse data formats instantly.
The most significant restraint in 2025 is the "Garbage In, Garbage Out" paradox. While AI can process data at scale, it cannot fix fundamentally poor-quality, outdated, or contradictory legacy data. Many enterprises are finding their historical data is too messy to be safely indexed, leading to stalled implementation timelines. Additionally, Data Privacy and Sovereignty concerns are creating friction. Organizations are hesitant to feed sensitive intellectual property or PII (Personally Identifiable Information) into vector databases that might be accessible to broad AI models, creating a complex challenge around permissioning and "knowledge partitioning" that slows down enterprise-wide rollout.
A massive opportunity lies in "Autonomous Knowledge Curation." There is an untapped market for systems that use AI not just to read knowledge, but to maintain it—automatically archiving obsolete documents, flagging contradictions between policy files, and prompting subject matter experts to update stale records. Another burgeoning area is "Multi-Modal Knowledge Retrieval." As video and audio become standard enterprise communication formats (via recorded meetings and tutorials), platforms that can transcribe, vectorise, and make video content as searchable as text will capture significant market share, unlocking the "dark data" currently trapped in multimedia files.
GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET
|
REPORT METRIC |
DETAILS |
|
Market Size Available |
2024 - 2030 |
|
Base Year |
2024 |
|
Forecast Period |
2025 - 2030 |
|
CAGR |
20% |
|
Segments Covered |
By Product, Type, Consumption, Distribution Channel and Region |
|
Various Analyses Covered |
Global, Regional & Country Level Analysis, Segment-Level Analysis, DROC, PESTLE Analysis, Porter’s Five Forces Analysis, Competitive Landscape, Analyst Overview on Investment Opportunities |
|
Regional Scope |
North America, Europe, APAC, Latin America, Middle East & Africa |
|
Key Companies Profiled |
OpenText Corporation, ServiceNow, Inc. SAP SE, Salesforce Inc., Atlassian Corporation, Microsoft Corporation, International Business Machines Corporation (IBM), Amazon Web Services, Inc., Google LLC, Coveo Solutions Inc. Lucidworks, Sinequa, KMS Lighthouse, NICE Verint Systems |
Segmentation by Type:
Vector Database is the fastest-growing type. This growth is explosive because vector databases are the native "storage format" for Generative AI. To make corporate data understandable to an LLM, it must be converted into numerical vectors. The rush to build RAG applications is driving unprecedented demand for specialized high-performance vector stores.
Intelligent Document Processing (IDP) remains the most dominant type. Despite the hype around new tech, the foundational need to digitize, OCR (Optical Character Recognition), and extract structured data from millions of invoices, contracts, and PDF forms remains the largest revenue generator, serving as the entry point for most knowledge management initiatives.
Segmentation by Distribution Channel:
Cloud Marketplaces are the fastest-growing channel. The ease of procurement—where an engineer can spin up a vector database instance on AWS or Azure with a single click and bill it to an existing enterprise agreement—is streamlining adoption. This "product-led growth" motion is bypassing traditional lengthy sales cycles.
Direct Sales (B2B) remains the most dominant channel. Given the complexity of integrating Knowledge Management systems with sensitive internal data infrastructure, large enterprises still prefer high-touch, consultative sales engagements with vendors who can provide bespoke security assurances and implementation roadmaps.
Segmentation by Organization Size:
Small & Medium Enterprises (SMEs) are the fastest-growing segment. The democratization of AI tools means that smaller firms can now access enterprise-grade semantic search capabilities via SaaS APIs without needing a massive IT team. This lowers the barrier to entry, allowing SMEs to compete on efficiency.
Large Enterprises are the most dominant segment. Their sheer volume of accumulated data (decades of records) and the complexity of their organizational structures make them the primary buyers. They are the only entities with the budget and the "pain" scale that justifies multi-million-dollar investments in comprehensive Knowledge Graphs.
Segmentation by Application:
Research & Development (R&D) is the fastest-growing application. In sectors like Pharma and Engineering, AI-driven knowledge management is being used to scour decades of test data and academic papers to accelerate discovery. The high value of shortening product development cycles drives aggressive investment here.
Customer Support & Service is the most dominant application. Deflecting support tickets by empowering chatbots with accurate knowledge base access provides an immediate, calculable ROI. This clear business case makes it the first and largest area of deployment for most companies.
North America dominates the market with a 38.9% share in 2025. This leadership is anchored by the presence of Silicon Valley's tech giants who are both the creators and primary consumers of these technologies. The region's aggressive early adoption of GenAI in the corporate sector sustains this lead.
Asia-Pacific is the fastest-growing region, projected to expand rapidly due to digitization initiatives in Japan and South Korea, and the massive scale of data generation in China. The region's focus on mobile-first and digital-native enterprise ecosystems is driving a leapfrog effect in adopting AI-first knowledge tools.
The long-term legacy of COVID-19 on this market was the permanent fracturing of the physical office, which destroyed the "watercooler" method of knowledge sharing. Remote work forced organizations to digitize informal knowledge. The pandemic proved that without a digital, accessible central brain, a distributed workforce crumbles. This trauma created a permanent budget line item for Knowledge Management. In 2025, the market is still benefiting from this shift, as "hybrid work" requires asynchronous information retrieval tools that serve employees across different time zones without human intervention.
A major trend in 2025 is the concept of "Data Ubiquity," where knowledge management is no longer a destination (a portal you visit) but a utility layer embedded in every app. "Copilots" in Word, IDEs, and CRMs now proactively surface context-aware knowledge without user queries. Another critical development is "Governance-First Architecture." Vendors are now building "permission-aware" vector indices that respect complex enterprise access control lists (ACLs) at the atomic level, ensuring that an AI agent never summarizes a confidential document for an unauthorized user.
Chapter 1. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET – SCOPE & METHODOLOGY
1.1. Market Segmentation
1.2. Scope, Assumptions & Limitations
1.3. Research Methodology
1.4. Primary End-user Application .
1.5. Secondary End-user Application
Chapter 2. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET – EXECUTIVE SUMMARY
2.1. Market Size & Forecast – (2025 – 2030) ($M/$Bn)
2.2. Key Trends & Insights
2.2.1. Demand Side
2.2.2. Supply Side
2.3. Attractive Investment Propositions
2.4. COVID-19 Impact Analysis
Chapter 3. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET – COMPETITION SCENARIO
3.1. Market Share Analysis & Company Benchmarking
3.2. Competitive Strategy & Development Scenario
3.3. Competitive Pricing Analysis
3.4. Supplier-Distributor Analysis
Chapter 4. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET - ENTRY SCENARIO
4.1. Regulatory Scenario
4.2. Case Studies – Key Start-ups
4.3. Customer Analysis
4.4. PESTLE Analysis
4.5. Porters Five Force Model
4.5.1. Bargaining Frontline Workers Training of Suppliers
4.5.2. Bargaining Risk Analytics s of Customers
4.5.3. Threat of New Entrants
4.5.4. Rivalry among Existing Players
4.5.5. Threat of Substitutes Players
4.5.6. Threat of Substitutes
Chapter 5. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET - LANDSCAPE
5.1. Value Chain Analysis – Key Stakeholders Impact Analysis
5.2. Market Drivers
5.3. Market Restraints/Challenges
5.4. Market Opportunities
Chapter 6. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET – By Type
Chapter7. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET–ByVenue Type
Direct Sales (B2B)
Chapter 8. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET – By Organisation Size
Small & Medium Enterprises (SMEs)
Chapter 9. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET – By Application
Chapter 10. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET – By Geography – Market Size, Forecast, Trends & Insights
10.1. North America
10.1.1. By Country
10.1.1.1. U.S.A.
10.1.1.2. Canada
10.1.1.3. Mexico
10.1.2. By Type
10.1.3. By Application
10.1.4. By Form
10.1.5. By Infrastructure Scale
10.1.6. Countries & Segments - Market Attractiveness Analysis
10.2. Europe
10.2.1. By Country
10.2.1.1. U.K.
10.2.1.2. Germany
10.2.1.3. France
10.2.1.4. Italy
10.2.1.5. Spain
10.2.1.6. Rest of Europe
10.2.2. By Type
10.2.3. By Application
10.2.4. By Form
10.2.5. By Infrastructure Scale
10.2.6. Countries & Segments - Market Attractiveness Analysis
10.3. Asia Pacific
10.3.1. By Country
10.3.1.1. China
10.3.1.2. Japan
10.3.1.3. South Korea
10.3.1.4. India
10.3.1.5. Australia & New Zealand
10.3.1.6. Rest of Asia-Pacific
10.3.2. By Type
10.3.3. By Application
10.3.4. By Form
10.3.5. By Infrastructure Scale
10.3.6. Countries & Segments - Market Attractiveness Analysis
10.4. South America
10.4.1. By Country
10.4.1.1. Brazil
10.4.1.2. Argentina
10.4.1.3. Colombia
10.4.1.4. Chile
10.4.1.5. Rest of South America
10.4.2. By Type
10.4.3. By Application
10.4.4. By Form
10.4.5. By Infrastructure Scale
10.4.6. Countries & Segments - Market Attractiveness Analysis
10.5. Middle East & Africa
10.5.1. By Country
10.5.1.1. United Arab Emirates (UAE)
10.5.1.2. Saudi Arabia
10.5.1.3. Qatar
10.5.1.4. Israel
10.5.1.5. South Africa
10.5.1.6. Nigeria
10.5.1.7. Kenya
10.5.1.8. Egypt
10.5.1.9. Rest of MEA
10.5.2. By Type
10.5.3. By Application
10.5.4. By Form
10.5.5. By Infrastructure Scale
10.5.6. Countries & Segments - Market Attractiveness Analysis
Chapter 11. GLOBAL ENTERPRISE KNOWLEDGE MANAGEMNET FOR ARTIFICIAL INTELLIGENCE MARKET – Company Profiles – (Overview, Type of Training Portfolio, Financials, Strategies & Developments)
2500
4250
5250
6900
Frequently Asked Questions
The primary drivers are the urgent need to support Generative AI implementations with accurate data (RAG), the necessity to eliminate data silos to enable autonomous AI agents, and the exponential growth of unstructured enterprise data that is impossible for humans to manage manually.
The most significant concerns revolve around data quality ("garbage in, garbage out"), the risk of AI hallucinations if the knowledge base is flawed, and complex data privacy/security challenges regarding who (or what AI) has access to sensitive corporate intelligence
The market is led by a mix of cloud giants and specialized search vendors, including Microsoft, OpenText, ServiceNow, Salesforce, IBM, Coveo, Sinequa, and Lucidworks, all of whom are pivoting to AI-first knowledge platforms.
North America currently holds the largest market share, estimated at approximately 38.9% in 2025. This is due to the high concentration of technology headquarters, early adoption of GenAI, and a mature IT infrastructure ecosystem
The Asia-Pacific region is expanding at the highest rate. Rapid economic digitization in Japan, South Korea, and China, combined with a mobile-first workforce culture, is driving massive investment in next-generation knowledge retrieval systems.
Analyst Support
Every order comes with Analyst Support.
Customization
We offer customization to cater your needs to fullest.
Verified Analysis
We value integrity, quality and authenticity the most.